如果你也在 怎样代写随机分析stochastic analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。随机分析stochastic analysis是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
随机分析stochastic analysis应用随机微积分的最著名的随机过程是维纳过程(为纪念诺伯特-维纳而命名),它被用来模拟路易-巴切莱特在1900年和阿尔伯特-爱因斯坦在1905年描述的布朗运动以及其他受随机力作用的粒子在空间的物理扩散过程。自20世纪70年代以来,维纳过程被广泛地应用于金融数学和经济学中,以模拟股票价格和债券利率的时间演变。
my-assignmentexpert™ 随机分析stochastic analysis作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的随机分析stochastic analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此随机分析stochastic analysis作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在数学mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的随机分析stochastic analysis作业代写代写服务。我们的专家在数学mathematics代写方面经验极为丰富,各种随机分析stochastic analysis相关的作业也就用不着 说。
我们提供的随机分析stochastic analysis及其相关学科的代写,服务范围广, 其中包括但不限于:
数学代写|随机分析作业代写stochastic analysis代考|stopping time
From now on, we mainly consider the case that $\mathbf{T}=\mathbf{Z}{\geq 0}={0,1,2, \ldots}$ in this chapter. Also, we fix a filtration $\left{\mathcal{F}{n}\right}_{n=0}^{\infty}=\left{\mathcal{F}{n}\right}{n \in \mathbf{Z}_{\geqq 0}}$.
Definition 2.3.1 We say that $\sigma$ is an $\left(\left{\mathcal{F}{n}\right}{n=0^{-}}^{\infty}\right)$ stopping time, if $\sigma$ is a mapping from $\Omega$ into $\mathbf{Z}{\geqq 0} \cup{\infty}$ such that $$ {\sigma=n} \in \mathcal{F}{n}, \quad n=0,1, \ldots
$$
Proposition 2.3.1 (1) Suppose that $\tau$ is a mapping from $\Omega$ into $\mathbf{Z}{\geq 0} \cup{\infty}$. Then $\tau$ is a stopping time, if and only if $$ {\tau \leqq n} \in \mathcal{F}{n}, \quad n=0,1, \ldots
$$
(2) Let $m \in \mathbf{Z}{\geqq 0} \cup{\infty}$ and let $\tau \equiv m$, i.e., $\tau(\omega)=m$, $\omega \in \Omega$. Then $\tau$ is a stopping time. (3) If $\sigma$ and $\tau$ are stopping times, $\sigma \wedge \tau, \sigma \vee \tau$, and $\sigma+\tau$ are stopping times. Here $\sigma \wedge \tau$ is a mapping defined by $(\sigma \wedge \tau)(\omega)=\sigma(\omega) \wedge \tau(\omega), \omega \in \Omega$. The definitions of $\sigma \vee \tau$ and $\sigma+\tau$ are similar. Proof We have Assertion (1) from the definition of filtration and the fact that $$ {\tau \leqq n}=\bigcup{k=0}^{n}{\tau=k} \text { and }{\tau=n}={\tau \leqq n} \backslash{\tau \leqq n-1}
$$
We have Assertions (2) and (3) from the definition of stopping times, Assertion
(1) and the fact that
$$
{\sigma \wedge \tau \leqq n}={\sigma \leqq n} \cup{\tau \leqq n}, \quad{\sigma \vee \tau \leqq n}={\sigma \leqq n} \cap{\tau \leqq n}
$$
and
$$
{\sigma+\tau=n}=\bigcup_{k=0}^{n}({\sigma=k} \cap{\tau=n-k})
$$
We define a subset $\mathcal{F}{\tau}$ of $\mathcal{F}$ for each stopping time $\tau$ by $$ \mathcal{F}{\tau}=\left{A \in \mathcal{F} ; A \cap{\tau=n} \in \mathcal{F}{n} \text { for any } n \in \mathbf{Z}{\geqq 0}\right}
$$
We leave the proof of the following proposition to the reader as an exercise.
数学代写|随机分析作业代写stochastic analysis代考|Let τ be a stopping time
Proposition 2.3.2 Let $\tau$ be a stopping time.
(1) Let $A \in \mathcal{F}$. Then $A \in \mathcal{F}{\tau}$, if and only if $A \cap{\tau \leqq n} \in \mathcal{F}{n}$ for any $n \in \mathbf{Z}{\geqq 0}$. (2) $\mathcal{F}{\tau}$ is a sub- $\sigma$-algebra.
(3) $\tau$ is $\mathcal{F}{\tau}$-measurable. (4) Let $m \in \mathbf{Z}{\geqq 0}$. If $\tau \equiv m$, then $\mathcal{F}{\tau}=\mathcal{F}{m}$.
Proposition 2.3.3 Let $\sigma$ and $\tau$ be stopping times.
(1) If $A \in \mathcal{F}{\sigma}$, then $A \cap{\sigma \leqq \tau} \in \mathcal{F}{\tau}$ and $A \cap{\sigma \leqq \tau} \in \mathcal{F}_{\sigma \wedge \tau}$.
(2) If $\sigma(\omega) \leqq \tau(\omega)$ for all $\omega \in \Omega$, then $\mathcal{F}{\sigma} \subset \mathcal{F}{\tau}$.
(3) $\mathcal{F}{\sigma} \cap \mathcal{F}{\tau}=\mathcal{F}{\sigma \wedge \tau}$. (4) ${\tau<\sigma},{\tau=\sigma},{\tau>\sigma} \in \mathcal{F}{\sigma \wedge \tau}$.
(5) If $A \in \mathcal{F}{\sigma}$, then $A \cap{\sigma=\tau} \in \mathcal{F}{\sigma \wedge \tau}$.
Proof (1) For any $n \in \mathbf{Z}{\geqq 0}$ we see that $$ (A \cap{\sigma \leqq \tau}) \cap{\tau=n}=(A \cap{\sigma \leqq n}) \cap{\tau=n} \in \mathcal{F}{n}
$$
So we see that $A \cap{\sigma \leqq \tau} \in \mathcal{F}{\tau}$. Then by this result we see that $$ A \cap{\sigma \leqq \tau}=A \cap{\sigma \leqq(\sigma \wedge \tau)} \in \mathcal{F}{\sigma \wedge \tau} .
$$
This implies Assertion (1).
Assertion (2) follows from Assertion (1), since ${\sigma \leqq \tau}=\Omega$.
Suppose that $A \in \mathcal{F}{\sigma} \cap \mathcal{F}{\tau}$. Then by Assertion (1) we see that $A=(A \cap{\sigma \leqq$ $\tau}) \cup(A \cap{\tau \leqq \sigma}) \in \mathcal{F}{\sigma \wedge \tau}$. So $\mathcal{F}{\sigma} \cap \mathcal{F}{\tau} \subset \mathcal{F}{\sigma \wedge \tau}$. Also, by Assertion (2) we see that $\mathcal{F}{\sigma \wedge \tau} \subset \mathcal{F}{\sigma} \cap \mathcal{F}_{\tau}$. So we have Assertion (3).
Letting $A=\Omega$ in Assertion (1), we see that ${\sigma \leqq \tau},{\tau \leqq \sigma} \in \mathcal{F}_{\sigma \wedge \tau}$. This implies Assertion (4).
Assertion (5) follows from Assertions (1) and (4).
随机分析代写
数学代写|随机分析作业代写STOCHASTIC ANALYSIS代考|STOPPING TIME
从现在开始,我们主要考虑$\mathbf{T}=\mathbf{Z}{\geq 0}={0,1,2, \ldots}$ in this chapter. Also, we fix a filtration $\left{\mathcal{F}{n}\right}_{n=0}^{\infty}=\left{\mathcal{F}{n}\right}{n \in \mathbf{Z}_{\geqq 0}}$.
定义 2.3.1 我们说σ是一个 $\tau$ is a mapping from $\Omega$ into $\mathbf{Z}{\geq 0} \cup{\infty}$. Then $\tau$ is a stopping time, if and only if $$ {\tau \leqq n} \in \mathcal{F}{n}, \quad n=0,1, \ldots
$$
(2) Let $m \in \mathbf{Z}{\geqq 0} \cup{\infty}$ and let $\tau \equiv m$, i.e., $\tau(\omega)=m$, $\omega \in \Omega$. Then $\tau$ is a stopping time. (3) If $\sigma$ and $\tau$ are stopping times, $\sigma \wedge \tau, \sigma \vee \tau$, and $\sigma+\tau$ are stopping times. Here $\sigma \wedge \tau$ is a mapping defined by $(\sigma \wedge \tau)(\omega)=\sigma(\omega) \wedge \tau(\omega), \omega \in \Omega$. The definitions of $\sigma \vee \tau$ and $\sigma+\tau$ are similar. Proof We have Assertion (1) from the definition of filtration and the fact that $$ {\tau \leqq n}=\bigcup{k=0}^{n}{\tau=k} \text { and }{\tau=n}={\tau \leqq n} \backslash{\tau \leqq n-1}
$$
We have Assertions (2) and (3) from the definition of stopping times, Assertion
(1) and the fact that
$$
{\sigma \wedge \tau \leqq n}={\sigma \leqq n} \cup{\tau \leqq n}, \quad{\sigma \vee \tau \leqq n}={\sigma \leqq n} \cap{\tau \leqq n}
$$
and
$$
{\sigma+\tau=n}=\bigcup_{k=0}^{n}({\sigma=k} \cap{\tau=n-k})
$$
We define a subset $\mathcal{F}{\tau}$ of $\mathcal{F}$ for each stopping time $\tau$ by $$ \mathcal{F}{\tau}=\left{A \in \mathcal{F} ; A \cap{\tau=n} \in \mathcal{F}{n} \text { for any } n \in \mathbf{Z}{\geqq 0}\right}
$$
我们留下以下证明给读者的建议作为练习。
数学代写|随机分析作业代写STOCHASTIC ANALYSIS代考|LET Τ BE A STOPPING TIME
命题 2.3.2 让τ是一个停止时间。
(1) Let $A \in \mathcal{F}$. Then $A \in \mathcal{F}{\tau}$, if and only if $A \cap{\tau \leqq n} \in \mathcal{F}{n}$ for any $n \in \mathbf{Z}{\geqq 0}$. (2) $\mathcal{F}{\tau}$ is a sub- $\sigma$-algebra.
(3) $\tau$ is $\mathcal{F}{\tau}$-measurable. (4) Let $m \in \mathbf{Z}{\geqq 0}$. If $\tau \equiv m$, then $\mathcal{F}{\tau}=\mathcal{F}{m}$.
Proposition 2.3.3 Let $\sigma$ and $\tau$ be stopping times.
(1) If $A \in \mathcal{F}{\sigma}$, then $A \cap{\sigma \leqq \tau} \in \mathcal{F}{\tau}$ and $A \cap{\sigma \leqq \tau} \in \mathcal{F}_{\sigma \wedge \tau}$.
(2) If $\sigma(\omega) \leqq \tau(\omega)$ for all $\omega \in \Omega$, then $\mathcal{F}{\sigma} \subset \mathcal{F}{\tau}$.
(3) $\mathcal{F}{\sigma} \cap \mathcal{F}{\tau}=\mathcal{F}{\sigma \wedge \tau}$. (4) ${\tau<\sigma},{\tau=\sigma},{\tau>\sigma} \in \mathcal{F}{\sigma \wedge \tau}$.
(5) If $A \in \mathcal{F}{\sigma}$, then $A \cap{\sigma=\tau} \in \mathcal{F}{\sigma \wedge \tau}$.
Proof (1) For any $n \in \mathbf{Z}{\geqq 0}$ we see that $$ (A \cap{\sigma \leqq \tau}) \cap{\tau=n}=(A \cap{\sigma \leqq n}) \cap{\tau=n} \in \mathcal{F}{n}
$$
So we see that $A \cap{\sigma \leqq \tau} \in \mathcal{F}{\tau}$. Then by this result we see that $$ A \cap{\sigma \leqq \tau}=A \cap{\sigma \leqq(\sigma \wedge \tau)} \in \mathcal{F}{\sigma \wedge \tau} .
$$
这意味着断言1.
断言2来自断言1, 自从σ≦τ=Ω.
假设 A(1), since ${\sigma \leqq \tau}=\Omega$.
Suppose that $A \in \mathcal{F}{\sigma} \cap \mathcal{F}{\tau}$. Then by Assertion (1) we see that $A=(A \cap{\sigma \leqq$ $\tau}) \cup(A \cap{\tau \leqq \sigma}) \in \mathcal{F}{\sigma \wedge \tau}$. So $\mathcal{F}{\sigma} \cap \mathcal{F}{\tau} \subset \mathcal{F}{\sigma \wedge \tau}$. Also, by Assertion (2) we see that $\mathcal{F}{\sigma \wedge \tau} \subset \mathcal{F}{\sigma} \cap \mathcal{F}_{\tau}$. 所以我们有断言
让一种=Ω在断言中1, 我们看到σ≦τ,τ≦σ∈Fσ∧τ. 这意味着断言4.
断言5来自断言1和4.
数学代写|随机分析作业代写stochastic analysis代考 matlab代写请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。