数学代写|随机分析作业代写stochastic analysis代考|Doob’s Inequality

如果你也在 怎样代写随机分析stochastic analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。随机分析stochastic analysis是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

随机分析stochastic analysis应用随机微积分的最著名的随机过程是维纳过程(为纪念诺伯特-维纳而命名),它被用来模拟路易-巴切莱特在1900年和阿尔伯特-爱因斯坦在1905年描述的布朗运动以及其他受随机力作用的粒子在空间的物理扩散过程。自20世纪70年代以来,维纳过程被广泛地应用于金融数学和经济学中,以模拟股票价格和债券利率的时间演变。

my-assignmentexpert™ 随机分析stochastic analysis作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的随机分析stochastic analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此随机分析stochastic analysis作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在数学mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的随机分析stochastic analysis作业代写代写服务。我们的专家在数学mathematics代写方面经验极为丰富,各种随机分析stochastic analysis相关的作业也就用不着 说。

我们提供的随机分析stochastic analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

数学代写|随机分析作业代写stochastic analysis代考|Doob’s Inequality

数学代写|随机分析作业代写stochastic analysis代考|submartingale

First, we consider of the case that $m$ is an integer, $\mathbf{T}={0,1, \ldots, m}$ and our filtration is $\left{\mathcal{F}{n}\right}{n=0}^{m}$.
Proposition 2.2.1 Let $X=\left{X_{n}\right}_{n=0}^{m}$ be a submartingale. Then
$$
\lambda P\left(\max {k=0, \ldots, m} X{k}>\lambda\right) \leqq E\left[X_{m}, \max {k=0, \ldots, m} X{k}>\lambda\right] \leqq E\left[X_{m} \vee 0\right], \quad \lambda>0 .
$$
Proof Let $A_{k}=\bigcap_{\ell=0}^{k-1}\left{X_{\ell} \leqq \lambda\right} \cap\left{X_{k}>\lambda\right}, k=0,1, \ldots, m$. Then it is easy to see that $A_{k} \in \mathcal{F}{k}, k=0, \ldots, m$, and $A{k}$ ‘s are mutually disjoint. Also, we see that
$$
\left{\max {k=0, \ldots, m} X{k}>\lambda\right}=\bigcup_{k=0}^{m} A_{k}
$$
Then we see that
$$
\begin{aligned}
& \lambda P\left(\max {k=0, \ldots, m} X{k}>\lambda\right) \
=& \lambda \sum_{k=0}^{m} P\left(A_{k}\right) \leqq \sum_{k=0}^{m} E\left[X_{k}, A_{k}\right] \
\leqq & \sum_{k=0}^{m} E\left[E\left[X_{m} \mid \mathcal{F}{k}\right], A{k}\right]=\sum_{k=0}^{m} E\left[X_{m}, A_{k}\right]=E\left[X_{m}, \max {k=0, \ldots, m} X{k}>\lambda\right] .
\end{aligned}
$$

This implies our assertion

数学代写|随机分析作业代写stochastic analysis代考|(Doob’s inequality)

Theorem 2.2.1 (Doob’s inequality) Let $M=\left{M_{n}\right}_{n=0}^{m}$ be a martingale. Then for any $p \in(1, \infty)$
$$
E\left[\max {k=0,1, \ldots, m}\left|M{k}\right|^{p}\right]^{1 / p} \leqq \frac{p}{p-1} E\left[\left|M_{m}\right|^{p}\right]^{1 / p} .
$$
Proof Our assertion is obvious if $E\left[\left|M_{m}\right|^{p}\right]=\infty$. So we assume that $E\left[\left|M_{m}\right|^{p}\right]<$ $\infty$. Let $Z=\max {k=0,1, \ldots, m}\left|M{k}\right|$. Then by Jensen’s inequality, we see that $$ E\left[Z^{p}\right] \leqq \sum_{k=0}^{m} E\left[\left|M_{k}\right|^{p}\right]=\sum_{k=0}^{m} E\left[\left|E\left[M_{m} \mid \mathcal{F}{k}\right]\right|^{p}\right] \leqq \sum{k=0}^{m} E\left[\left|M_{m}\right|^{p}\right]<\infty $$ Let $X_{n}=\left|M_{n}\right|, n=0,1, \ldots, m$. Then by Proposition $2.1 .2$, we see that $X=$ $\left{X_{n}\right}_{n=0}^{m}$ is a submartingale. So by Proposition 2.2.1 we see that $$ \lambda P(Z>\lambda) \leqq E\left[\left|M_{m}\right|, Z>\lambda\right], \quad \lambda>0 .
$$
Then we see that
$$
\begin{aligned}
E\left[Z^{p}\right] &=E\left[\int_{0}^{\infty} 1_{[Z>\lambda}} p \lambda^{p-1} d \lambda\right]=p \int_{0}^{\infty} \lambda^{p-1} P(Z>\lambda) d \lambda \
& \leqq p \int_{0}^{\infty} \lambda^{p-2} E\left[\left|M_{m}\right|, Z>\lambda\right] d \lambda=p E\left[\left|M_{m}\right|\left(\int_{0}^{\infty} 1_{(Z>\lambda)} \lambda^{p-2} d \lambda\right)\right] \
&=\frac{p}{p-1} E\left[\left|M_{m}\right| Z^{p-1}\right] \leqq \frac{p}{p-1} E\left[\left|M_{m}\right|^{p}\right]^{1 / p} E\left[Z^{p}\right]^{(p-1) / p}
\end{aligned}
$$
Here we use Hölder’s inequality (Proposition 1.5.1). Since $E\left[Z^{p}\right]<\infty$, we have our assertion.

Now let us consider the case that $\mathbf{T}=\mathbf{Z}{\geqq 0}$ and our filtration is $\left{\mathcal{F}{n}\right}_{n=0}^{\infty}$. We say that $M=\left{M_{n}\right}_{n=0}^{\infty}$ is a square integrable martingale, if $M$ is a martingale and if $E\left[M_{n}^{2}\right]<\infty, n=0,1, \ldots .$
Proposition 2.2.2 If $M=\left{M_{n}\right}_{n=0}^{\infty}$ is a square integrable martingale, then
$$
E\left[\left(M_{n}-M_{m}\right)^{2} \mid \mathcal{F}{m}\right]=E\left[M{n}^{2} \mid \mathcal{F}{m}\right]-M{m}^{2}, \quad n \geqq m \geqq 1
$$
In particular,
$$
E\left[M_{n}^{2}\right]=E\left[M_{0}^{2}\right]+\sum_{k=1}^{n} E\left[\left(M_{k}-M_{k-1}\right)^{2}\right], \quad n \geqq 0
$$

数学代写|随机分析作业代写stochastic analysis代考|Doob’s Inequality

随机分析代写

数学代写|随机分析作业代写STOCHASTIC ANALYSIS代考|SUBMARTINGALE

首先,我们考虑以下情况米是一个整数, $\mathbf{T}={0,1, \ldots, m}$ and our filtration is $\left{\mathcal{F}{n}\right}{n=0}^{m}$.
Proposition 2.2.1 Let $X=\left{X_{n}\right}_{n=0}^{m}$ be a submartingale. Then
$$
\lambda P\left(\max {k=0, \ldots, m} X{k}>\lambda\right) \leqq E\left[X_{m}, \max {k=0, \ldots, m} X{k}>\lambda\right] \leqq E\left[X_{m} \vee 0\right], \quad \lambda>0 .
$$
Proof Let $A_{k}=\bigcap_{\ell=0}^{k-1}\left{X_{\ell} \leqq \lambda\right} \cap\left{X_{k}>\lambda\right}, k=0,1, \ldots, m$. Then it is easy to see that $A_{k} \in \mathcal{F}{k}, k=0, \ldots, m$, and $A{k}$ ‘s are mutually disjoint. Also, we see that
$$
\left{\max {k=0, \ldots, m} X{k}>\lambda\right}=\bigcup_{k=0}^{m} A_{k}
$$
Then we see that
$$
\begin{aligned}
& \lambda P\left(\max {k=0, \ldots, m} X{k}>\lambda\right) \
=& \lambda \sum_{k=0}^{m} P\left(A_{k}\right) \leqq \sum_{k=0}^{m} E\left[X_{k}, A_{k}\right] \
\leqq & \sum_{k=0}^{m} E\left[E\left[X_{m} \mid \mathcal{F}{k}\right], A{k}\right]=\sum_{k=0}^{m} E\left[X_{m}, A_{k}\right]=E\left[X_{m}, \max {k=0, \ldots, m} X{k}>\lambda\right] .
\end{aligned}
$$

这意味着我们的断言

数学代写|随机分析作业代写STOCHASTIC ANALYSIS代考|(DOOB’S INEQUALITY)

Theorem 2.2.1 (Doob’s inequality) Let $M=\left{M_{n}\right}_{n=0}^{m}$ be a martingale. Then for any $p \in(1, \infty)$
$$
E\left[\max {k=0,1, \ldots, m}\left|M{k}\right|^{p}\right]^{1 / p} \leqq \frac{p}{p-1} E\left[\left|M_{m}\right|^{p}\right]^{1 / p} .
$$
Proof Our assertion is obvious if $E\left[\left|M_{m}\right|^{p}\right]=\infty$. So we assume that $E\left[\left|M_{m}\right|^{p}\right]<$ $\infty$. Let $Z=\max {k=0,1, \ldots, m}\left|M{k}\right|$. Then by Jensen’s inequality, we see that $$ E\left[Z^{p}\right] \leqq \sum_{k=0}^{m} E\left[\left|M_{k}\right|^{p}\right]=\sum_{k=0}^{m} E\left[\left|E\left[M_{m} \mid \mathcal{F}{k}\right]\right|^{p}\right] \leqq \sum{k=0}^{m} E\left[\left|M_{m}\right|^{p}\right]<\infty $$ Let $X_{n}=\left|M_{n}\right|, n=0,1, \ldots, m$. Then by Proposition $2.1 .2$, we see that $X=$ $\left{X_{n}\right}_{n=0}^{m}$ is a submartingale. So by Proposition 2.2.1 we see that $$ \lambda P(Z>\lambda) \leqq E\left[\left|M_{m}\right|, Z>\lambda\right], \quad \lambda>0 .
$$
Then we see that
$$
\begin{aligned}
E\left[Z^{p}\right] &=E\left[\int_{0}^{\infty} 1_{[Z>\lambda}} p \lambda^{p-1} d \lambda\right]=p \int_{0}^{\infty} \lambda^{p-1} P(Z>\lambda) d \lambda \
& \leqq p \int_{0}^{\infty} \lambda^{p-2} E\left[\left|M_{m}\right|, Z>\lambda\right] d \lambda=p E\left[\left|M_{m}\right|\left(\int_{0}^{\infty} 1_{(Z>\lambda)} \lambda^{p-2} d \lambda\right)\right] \
&=\frac{p}{p-1} E\left[\left|M_{m}\right| Z^{p-1}\right] \leqq \frac{p}{p-1} E\left[\left|M_{m}\right|^{p}\right]^{1 / p} E\left[Z^{p}\right]^{(p-1) / p}
\end{aligned}
$$
这里我们使用 Hölder 不等式磷r这p这s一世吨一世这n1.5.1. 自从和[从p]<∞,我们有我们的断言。

现在让我们考虑 $\mathbf{T}=\mathbf{Z}{\geqq 0}$ and our filtration is $\left{\mathcal{F}{n}\right}_{n=0}^{\infty}$. We say that $M=\left{M_{n}\right}_{n=0}^{\infty}$ is a square integrable martingale, if $M$ is a martingale and if $E\left[M_{n}^{2}\right]<\infty, n=0,1, \ldots .$
Proposition 2.2.2 If $M=\left{M_{n}\right}_{n=0}^{\infty}$ is a square integrable martingale, then
$$
E\left[\left(M_{n}-M_{m}\right)^{2} \mid \mathcal{F}{m}\right]=E\left[M{n}^{2} \mid \mathcal{F}{m}\right]-M{m}^{2}, \quad n \geqq m \geqq 1
$$
In particular,
$$
E\left[M_{n}^{2}\right]=E\left[M_{0}^{2}\right]+\sum_{k=1}^{n} E\left[\left(M_{k}-M_{k-1}\right)^{2}\right], \quad n \geqq 0
$$

数学代写|随机分析作业代写stochastic analysis代考

数学代写|随机分析作业代写stochastic analysis代考 matlab代写请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

实分析代考

图论代考

运筹学代考

模电数电代写

神经网络代写

数学建模代考

发表评论

您的电子邮箱地址不会被公开。 必填项已用 * 标注