Scroll Top
19th Ave New York, NY 95822, USA

微积分代考calculus代写| Differentiability of a Function

微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法

my-assignmentexpert™ 微积分calculus作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的微积分calculus作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于economics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此微积分calculus作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在经济学作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的微积分calculus代写服务。我们的专家在微积分calculus学 代写方面经验极为丰富,各种微积分calculus相关的作业也就用不着 说。

我们提供的econ代写服务范围广, 其中包括但不限于:

  • 单变量微积分
  • 多变量微积分
  • 傅里叶级数
  • 黎曼积分
  • ODE
  • 微分学
微积分代考calculus代写| Differentiability of a Function

微积分代考calculus代写|Definition and Examples

Then, for $x$ in a neigbourhood of $x_{0}$, the quotient
$$
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$
is the slop of the line segment joining the points $X_{0}=\left(x_{0}, f\left(x_{0}\right)\right)$ and $X=(x, f(x))$. As $x \rightarrow x_{0}$, the point $X$ approaches $X_{0}$, so that, if the limit
$$
\lim {x \rightarrow x{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$
exists, then it can be thought of as the slope of the tangent to the curve at the point $X_{0}$.

Suppose $f$ is a (real valued) function defined on an open interval $I$ and $x_{0} \in I$. Then $f$ is said to be differentiable at $x_{0}$ if
$$
\lim {x \rightarrow x{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$
exists, and in that case the value of the limit is called the derivative of $f$ at $x_{0}$, and this value is denoted by $f^{\prime}\left(x_{0}\right)$ (Fig. 2.13).

微积分代考CALCULUS代写|Left and Right Derivatives

In some of the books in calculus, one may find the notations $f^{\prime}\left(x_{0}-\right)$ and $f^{\prime}\left(x_{0}+\right)$ for left derivative and right derivative, respectively, at $x_{0}$. We preferred to use the notations $f_{-}^{\prime}\left(x_{0}\right)$ and $f_{+}^{\prime}\left(x_{0}\right)$ as the notations $f^{\prime}\left(x_{0}-\right)$ and $f^{\prime}\left(x_{0}+\right)$ can be confused with the left and right limits of the function $f^{\prime}$ at the point $x_{0}$.

Left derivative and right derivative at a point can be characterized as follows: Let $f$ be a real valued function defined on an interval $I$ and $x_{0} \in I$.
(i) If $\left(x_{0}-\delta_{0}, x_{0}\right] \subseteq I$ for some $\delta_{0}>0$, then $f_{-}^{\prime}\left(x_{0}\right)$ exists if and only if for every sequence $\left(x_{n}\right)$ in $\left(x_{0}-\delta_{0}, x_{0}\right)$ with $x_{n} \rightarrow x_{0}$, we have $\lim {n \rightarrow \infty} \frac{f\left(x{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}$ exists, and in that case
$$
f_{-}^{\prime}\left(x_{0}\right)=\lim {n \rightarrow \infty} \frac{f\left(x{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}
$$
(ii) If $\left[x_{0}, x_{0}+\delta_{0}\right) \subseteq I$ for some $\delta_{0}>0$, then $f_{+}^{\prime}\left(x_{0}\right)$ exists if and only if for every sequence $\left(x_{n}\right)$ in $\left(x_{0}, x_{0}+\delta_{0}\right)$ with $x_{n} \rightarrow x_{0}$, we have $\lim {n \rightarrow \infty} \frac{f\left(x{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}$ exists, and in that case
$$
f_{+}^{\prime}\left(x_{0}\right)=\lim {n \rightarrow \infty} \frac{f\left(x{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}
$$
In view of the above discussion, we have the following:
If $x_{0}$ is an interior point of $I$, then $f^{\prime}\left(x_{0}\right)$ exists if and only if $f_{+}^{\prime}\left(x_{0}\right)$ and $f_{-}^{\prime}\left(x_{0}\right)$ exists and $f^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)$.

微积分代考CALCULUS代写|Some Properties of Differentiable Functions

Recall that in Theorem 2.3.6 and Theorem 2.3.7 we assumed $g^{\prime}\left(y_{0}\right) \neq$ 0 and $f^{\prime}\left(x_{0}\right) \neq 0$, respectively. Can we obtain at least differentiability without the above assumptions? Theorem 2.3.5 shows that the condition $f^{\prime}\left(x_{0}\right) \neq 0$ is necessary in Theorem 2.3.7 for the differentiability of $f^{-1}$ at $x_{0}$. What about the case of Theorem 2.3.6? That is, can we say that $f$ is differentiable at $x_{0}$ and $f^{\prime}\left(x_{0}\right) g^{\prime}\left(y_{0}\right)=(g \circ f)^{\prime}\left(x_{0}\right)$ ? The answer is not in the affirmative. For example, consider
$$
f(x)=|x|, \quad g(x)=x^{2}, \quad x \in \mathbb{R} .
$$
Then $(g \circ f)(x)=x^{2}$. In this case, $g \circ f$ and $g$ are differentiable at every point in $\mathbb{R}$, but $f$ is not differentiable at $x_{0}=0$. Note that $g^{\prime}\left(y_{0}\right)=0$.

微积分代考CALCULUS代写|A Sufficient Condition for a Local Extremum Point

Suppose $f$ is continuous on an interval I and $x_{0}$ is an interior point of $I$. Further suppose that $f$ is differentiable in a deleted neighbourhood of $x_{0}$.
(i) If there exists an open interval $I_{0} \subseteq I$ containing $x_{0}$ such that
$$
f^{\prime}(x)>0 \quad \forall x \in I_{0}, xx_{0}
$$
then $f$ has a local maximum at $x_{0}$.
(ii) If there exists an open interval $I_{0} \subseteq I$ containing $x_{0}$ such that
$$
f^{\prime}(x)<0 \quad \forall x \in I_{0}, x0 \quad \forall x \in I_{0}, x>x_{0}
$$
then $f$ has a local minimum at $x_{0}$.
Proof (i) Let $x \in I_{0}$. Then, by mean value theorem, there exists $\xi_{x}$ between $x_{0}$ and $x$ such that
$$
f(x)-f\left(x_{0}\right)=f^{\prime}\left(\xi_{x}\right)\left(x-x_{0}\right)
$$
By assumption,
$$
x0 \text { and } x>x_{0} \Rightarrow f^{\prime}\left(\xi_{x}\right)<0
$$
Hence, in both the cases, we have $f(x)<f\left(x_{0}\right)$ so that $f$ has local maximum at $x_{0}$. Thus, (i) is proved.
Similar arguments will lead to the proof of (ii).


微积分代考calculus代写| Differentiability of a Function

微积分代考CALCULUS代写|DEFINITION AND EXAMPLES

那么,对于X在附近的X0, 商
F(X)−F(X0)X−X0
是连接点的线段的斜率X0=(X0,F(X0))和X=(X,F(X)). 作为X→X0, 点X方法X0,因此,如果限制
$$
\lim {x \rightarrow x {0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$
存在,则可以认为是曲线在该点的切线斜率X0.

认为F是在开区间上定义的(实值)函数一世和X0∈一世. 然后F据说是可微分的X0如果
$$
\lim {x \rightarrow x {0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$
存在,并且在这种情况下极限的值称为导数F在X0, 这个值表示为F′(X0)(图 2.13)。

微积分代考CALCULUS代写|LEFT AND RIGHT DERIVATIVES

在一些微积分书籍中,人们可能会发现符号F′(X0−)和F′(X0+)对于左导数和右导数,分别为X0. 我们更喜欢使用符号F−′(X0)和F+′(X0)作为符号F′(X0−)和F′(X0+)可以与函数的左右界限混淆F′在这一点上X0.

一点的左导数和右导数可以表征如下:F是定义在区间上的实值函数一世和X0∈一世.
(一) 如果(X0−d0,X0]⊆一世对于一些d0>0, 然后F−′(X0)当且仅当对于每个序列存在(Xn)在(X0−d0,X0)和Xn→X0,我们有 $\lim {n \rightarrow \infty} \frac{f\left(x {n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0} }和X一世s吨s,一种nd一世n吨H一种吨C一种s和$
f_{-}^{\prime}\left(x_{0}\right)=\lim {n \rightarrow \infty} \frac{f\left(x {n}\right)-f\left(x_ {0}\right)}{x_{n}-x_{0}}
$$
(ii) 如果[X0,X0+d0)⊆一世对于一些d0>0, 然后F+′(X0)当且仅当对于每个序列存在(Xn)在(X0,X0+d0)和Xn→X0,我们有 $\lim {n \rightarrow \infty} \frac{f\left(x {n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0} }和X一世s吨s,一种nd一世n吨H一种吨C一种s和$
f_{+}^{\prime}\left(x_{0}\right)=\lim {n \rightarrow \infty} \frac{f\left(x {n}\right)-f\left(x_ {0}\right)}{x_{n}-x_{0}}
$$
鉴于上述讨论,我们有以下结论:
如果X0是一个内点一世, 然后F′(X0)当且仅当存在F+′(X0)和F−′(X0)存在并且F′(X0)=F+′(X0)=F−′(X0).

微积分代考CALCULUS代写|SOME PROPERTIES OF DIFFERENTIABLE FUNCTIONS

回想一下,在定理 2.3.6 和定理 2.3.7 中,我们假设G′(和0)≠0 和F′(X0)≠0, 分别。如果没有上述假设,我们至少可以获得可微性吗?定理 2.3.5 表明条件F′(X0)≠0对于定理 2.3.7 的可微性是必要的F−1在X0. 定理 2.3.6 的情况如何?也就是说,我们可以说F可微分于X0和F′(X0)G′(和0)=(G∘F)′(X0)? 答案不是肯定的。例如,考虑
F(X)=|X|,G(X)=X2,X∈R.
然后(G∘F)(X)=X2. 在这种情况下,G∘F和G在每个点都是可微的R, 但F不可微分X0=0. 注意G′(和0)=0.

微积分代考CALCULUS代写|A SUFFICIENT CONDITION FOR A LOCAL EXTREMUM POINT

认为F在区间 I 上是连续的并且X0是一个内点一世. 进一步假设F在删除的邻域中是可微的X0.
(i) 如果存在开区间一世0⊆一世包含X0这样
F′(X)>0∀X∈一世0,XX0
然后F有一个局部最大值在X0.
(ii) 如果存在开区间一世0⊆一世包含X0这样
F′(X)<0∀X∈一世0,X0∀X∈一世0,X>X0
然后F有一个局部最小值X0.
证明 (i) 让X∈一世0. 那么,根据中值定理,存在XX之间X0和X这样
F(X)−F(X0)=F′(XX)(X−X0)
根据假设,
X0 和 X>X0⇒F′(XX)<0
因此,在这两种情况下,我们都有F(X)<F(X0)以便F有局部最大值在X0. 因此,(i) 被证明。
类似的论点将导致 (ii) 的证明。

微积分note Compactness

微积分note Integer Multiples of Irrational Numbers 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

组合数学代考

统计作业代写

集合论数理逻辑代写案例

凸优化代写

统计exam代考

Related Posts

Leave a comment