如果你也在 怎样代写量子计算Quantum computing这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。量子计算Quantum computing是物理和计算机的交叉学科,构造新型计算模式。传统计算机和量子计算机之间的根本区别在于,量子计算机中的程序本质上是概率性质的,而传统计算机通常是确定性的。 在量子算法中,每个可能的结果都有关联的概率振幅。 测量后,其中某个可能状态以特定概率获得。 该情况与传统计算相反,在传统计算中,一个位只能是确定的 0 或 1。
量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。 对照于传统的通用计算机,其理论模型是通用图灵机;通用的量子计算机,其理论模型是用量子力学规律重新诠释的通用图灵机。
量子计算Quantum computation领域盛行的量子计算模型是以量子逻辑门的网络来描述计算的。这个模型是布尔电路的一个复杂的线性代数的概括。
一个由$n$位信息组成的存储器有$2^{n}$的可能状态。因此,代表所有存储器状态的向量有2^{n}$项(每个状态一个)。这个向量被看作是一个概率向量,代表内存在某个特定状态下被发现的事实。
在经典观点中,一个条目的值为1(即处于这种状态的概率为100美元),所有其他条目都是0。
在量子力学中,概率向量可以被概括为密度算子。量子状态向量形式主义通常首先被介绍,因为它在概念上更简单,而且它可以代替密度矩阵形式主义用于纯状态,在那里整个量子系统是已知的。
我们首先考虑一个只由一个比特组成的简单存储器。这个存储器可以在两种状态中找到一个:零状态或一状态。我们可以用狄拉克符号来表示这个存储器的状态,因此
$|0\rangle:=\left(\begin{array}{l}1 \ 0\end{array}\right)$
$|1\rangle:=\left(\begin{array}{l}0 \ 1\end{array}\right)$
然后,在两个经典状态$|0\rangle$和$|1\rangle$的任何量子叠加中可以找到一个量子存储器。
$|\psi\rangle:=\alpha|0\rangle+\beta|1\rangle=\left(\begin{array}{c}\alpha \ \beta\end{array}\right) ; \quad|\alpha|^{2}+|\beta|^{2}=1$
my-assignmentexpert™ 量子计算Quantum computing作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的量子计算Quantum computing作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此量子计算Quantum computing作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在统计Statistics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在量子计算Quantum computing代写方面经验极为丰富,各种量子计算Quantum computing相关的作业也就用不着 说。
我们提供的量子计算Quantum computing及其相关学科的代写,服务范围广, 其中包括但不限于:
- 密码学 Cryptography
- 搜索算法 Search problems
- 量子系统的仿真 Simulation of quantum systems
- 机器学习 Machine learning
- 计算生物学 Computational biology
- Computer-aided drug design and generative chemistry
量子计算作业代写Quantum computing代考|QUANTUM COMPUTING PROPERTY
A classical bit is a scalar variable which has a single value of either 0 or 1 . The bit’s value is unique, deterministic, and unambigous. On the other hand, a qubit is more general in the sense that it represents a state defined by a pair of complex numbers, $(a, b)$, which together express the probability that a reading of the value of the qubit will give a value of 0 or 1 . Thus, a qubit can be in the state of 0,1 , or some mixture – referred to as a superposition – of the 0 and 1 states. The weights of 0 and 1 in this superposition are determined by $(a, b)$ in the following way:
$$
q u b i t=(a, b)=a \cdot 0_{b i t}+b \cdot 1_{b i t} .
$$
Clearly, in strong contrast to a bit, the state of a qubit can be both 0 and 1 simultaneously. Stated more generally, the state of a qubit is represented as a linear combination of the 0 state and the 1 state, where the weights are defined by the values $a$ and $b$. A bit can, therefore, be thought of as a special case of a qubit in which there is no superposition. For example, the qubit $(1,0)$ represents a bit in the state 0 , while the qubit $(0,1)$ is equivalent to a bit in the state 1 .
物理代写
量子计算作业代写QUANTUM COMPUTING代考|QUANTUM COMPUTING PROPERTY #2
Quantum computing is a probabilistic computational model.
When an $n$-qubit quantum register contains a superposition of $2^{n}$ states, the application of a read operation to the register will cause the superposition to “collapse” to a single classical state. That is, a measurement of a 2-qubit state produces a 2-bit result. The specific state to which it collapses is probabilistic with statistics determined by the weights in the linear combination. For example, a read – or measurement – of a 2 -qubit register $R$ given by
$$
|\boldsymbol{R}\rangle=\alpha|\mathbf{0 0}\rangle+\beta|\mathbf{0 1}\rangle+\gamma|\mathbf{1 0}\rangle+\delta|\mathbf{1 1}\rangle
$$
will obtain the classical bit state 00 with probability $|\alpha|^{2}$, the classical bit state 01 with probability $|\beta|^{2}$, and so on.
In general, measurement of a $n$-qubit state produces $n$-bits of classical information, and the probability to obtain the state $i$ is given by:
$$
P_{i}=|\langle\boldsymbol{i} \mid \boldsymbol{R}\rangle|^{2}
$$
where $\langle\mathbf{i}|$ is an $n$-bit binary vector in the computational basis.
As with most probabilistic problems, we want to impose the condition that the sum of the probabilities for all possible outsomes should equal 1 :
$$
P_{\text {total }}=\sum_{i} P_{i}=1 .
$$
In the previous example this means that:
$$
|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}+|\delta|^{2}=1 .
$$
Therefore, we need to impose the condition that quantum registers should always be normalized to unity.
It is critical to understand that once a measurement is applied to obtain a state, all subsequent measurements will obtain that same state. Thus, if the state 10 is read from $|\boldsymbol{R}\rangle$, the superposition given above has collapsed so that $\gamma=1$ and all other weights are zero. At this point $R$ is equivalent to a classical register containing the state 10 :
$$
|R\rangle \rightarrow|10\rangle .
$$
物理代考
量子计算作业代写QUANTUM COMPUTING代考|QUANTUM COMPUTING PROPERTY
经典位是一个标量变量,它具有单一值 0 或 1 。该位的值是唯一的、确定的和明确的。另一方面,一个量子比特在它代表由一对复数定义的状态的意义上更普遍,(一种,b),它们一起表示读取量子比特值将给出值 0 或 1 的概率。因此,一个量子比特可以处于 0,1 状态,或者是 0 和 1 状态的某种混合(称为叠加)。该叠加中 0 和 1 的权重由下式确定(一种,b)通过以下方式:
q你b一世吨=(一种,b)=一种⋅0b一世吨+b⋅1b一世吨.
显然,与比特形成强烈对比的是,量子比特的状态可以同时为 0 和 1。更一般地说,量子比特的状态表示为 0 状态和 1 状态的线性组合,其中权重由值定义一种和b. 因此,一个比特可以被认为是一个没有叠加的量子比特的特例。例如,量子位(1,0)表示处于状态 0 的位,而 qubit(0,1)相当于处于状态 1 的位。
物理代写
量子计算作业代写QUANTUM COMPUTING代考|QUANTUM COMPUTING PROPERTY #2
量子计算是一种概率计算模型。
当一个n-qubit量子寄存器包含一个叠加2n状态,对寄存器应用读操作将导致叠加“崩溃”为单个经典状态。也就是说,对 2 量子位状态的测量会产生 2 位结果。它崩溃到的特定状态是概率性的,统计数据由线性组合中的权重确定。例如,读取或测量 2 量子位寄存器R由
|R⟩=一种|00⟩+b|01⟩+C|10⟩+d|11⟩
将以概率获得经典位状态 00|一种|2, 经典位状态 01 概率|b|2, 等等。
一般来说,测量一个n-qubit 状态产生n-位的经典信息,以及获得状态的概率一世是(谁)给的:
磷一世=|⟨一世∣R⟩|2
在哪里⟨一世|是一个n位二进制向量中的计算基础。
与大多数概率问题一样,我们要强加一个条件,即所有可能的外染色体的概率之和应该等于 1:
磷全部的 =∑一世磷一世=1.
在前面的示例中,这意味着:
|一种|2+|b|2+|C|2+|d|2=1.
因此,我们需要强加一个条件,即量子寄存器应始终归一化为单位。
重要的是要理解,一旦应用测量来获得状态,所有后续测量都将获得相同的状态。因此,如果状态 10 从|R⟩, 上面给出的叠加已经坍缩,使得C=1并且所有其他权重为零。在此刻R等效于包含状态 10 的经典寄存器:
物理代写| 量子计算作业代写Quantum computing代考|UNDERSTANDING QUANTUM ALGORITHMICS 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
电磁学代考
物理代考服务:
物理Physics考试代考、留学生物理online exam代考、电磁学代考、热力学代考、相对论代考、电动力学代考、电磁学代考、分析力学代考、澳洲物理代考、北美物理考试代考、美国留学生物理final exam代考、加拿大物理midterm代考、澳洲物理online exam代考、英国物理online quiz代考等。
光学代考
光学(Optics),是物理学的分支,主要是研究光的现象、性质与应用,包括光与物质之间的相互作用、光学仪器的制作。光学通常研究红外线、紫外线及可见光的物理行为。因为光是电磁波,其它形式的电磁辐射,例如X射线、微波、电磁辐射及无线电波等等也具有类似光的特性。
大多数常见的光学现象都可以用经典电动力学理论来说明。但是,通常这全套理论很难实际应用,必需先假定简单模型。几何光学的模型最为容易使用。
相对论代考
上至高压线,下至发电机,只要用到电的地方就有相对论效应存在!相对论是关于时空和引力的理论,主要由爱因斯坦创立,相对论的提出给物理学带来了革命性的变化,被誉为现代物理性最伟大的基础理论。
流体力学代考
流体力学是力学的一个分支。 主要研究在各种力的作用下流体本身的状态,以及流体和固体壁面、流体和流体之间、流体与其他运动形态之间的相互作用的力学分支。
随机过程代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。 例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。