Scroll Top
19th Ave New York, NY 95822, USA

数学代写|微分方程代写differential equation代考|Analytical solutions of first-order differential equations

如果你也在 怎样代写微分方程differential equation这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。微分方程differential equation在数学中,是将一个或多个未知函数及其导数联系起来的方程。在应用中,函数通常代表物理量,导数代表其变化率,而微分方程则定义了两者之间的关系。这种关系很常见;因此,微分方程在许多学科,包括工程、物理学、经济学和生物学中发挥着突出作用。

微分方程differential equation研究主要包括研究其解(满足每个方程的函数集合),以及研究其解的性质。只有最简单的微分方程可以用明确的公式求解;然而,一个给定的微分方程的解的许多属性可以在不精确计算的情况下确定。

my-assignmentexpert™ 微分方程differential equation作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的微分方程differential equation作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此微分方程differential equation作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在数学mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的微分方程differential equation代写服务。我们的专家在数学mathematics代写方面经验极为丰富,各种微分方程differential equation相关的作业也就用不着 说。

我们提供的微分方程differential equation及其相关学科的代写,服务范围广, 其中包括但不限于:

数学代写|微分方程代写differential equation代考|Analytical solutions of first-order differential equations

数学代写|微分方程代写differential equation代考|Differential equation solvable by simple integrals

There are various formats for the first-order differential equations. Therefore the solutions of the differential equations become extremely complicated, since a tremendous amount of skills and tactics should be mastered before one is able to solve differential equations. For some differential equations, even if one is an expert who has mastered a significant number of methods and tactics, he/she may still not able to find the analytical solutions. In this section, some simple first-order differential equations are discussed, and solution patterns are explored.
Definition 2.1. The simplest form of a class of differential equations is
$$
\frac{\mathrm{d} y(x)}{\mathrm{d} x}=f(x)
$$
It can also be simply denoted as $y^{\prime}(x)=f(x)$. The analytical solution of this differential equation is, in fact, the indefinite integral of $f(x)$, namely
$$
y(x)=\int f(x) \mathrm{d} x+C .
$$
The solution to such a differential equation is, in fact, the first-order indefinite integral of the given function. If the indefinite integral has an analytical expression, then there is an analytical solution for the differential equation. Otherwise, there is no analytical solution for the differential equation.

数学代写|微分方程代写differential equation代考|Homogeneous differential equations

The aforementioned differential equations directly solvable by integration are not genuine differential equations. Normally, a differential equation may also contain the function $y(x)$ itself. Such differential equations cannot be solved directly by merely using direct indefinite integral evaluation methods. In this section, simple first-order homogeneous linear differential equations are introduced, as well as their general solution methods.

Definition 2.2. The mathematical form of the first-order homogeneous linear differential equation is
$$
\frac{\mathrm{d} y(x)}{\mathrm{d} x}+f(x) y(x)=0 .
$$
With simple conversion, it is not hard to find the analytical solution of the differential equation through the following procedure:
$$
\frac{\mathrm{d} y(x)}{y(x)}=-f(x) \mathrm{d} x .
$$
It can then be found that
$$
\ln y(x)=-\int f(x) \mathrm{d} x .
$$

Finally, the analytical solution of the differential equation is
$$
y(x)=C \mathrm{e}^{-\int f(x) \mathrm{d} x} .
$$
For the first-order differential equations, there exists an undetermined coefficient C. If the exact value of the function $y(x)$ at a certain time is given, an algebraic equation solution technique is used to determine uniquely the value of $C$. For high-order differential equations, there may exist more undetermined coefficients. If some values of the function $y(x)$ and its first few derivatives are known, analytical solutions of such equations may be uniquely determined.

数学代写|微分方程代写DIFFERENTIAL EQUATION代考|Inhomogeneous linear differential equations

If a term $x$ is added to the right-hand side function $g(x)$, the original homogeneous differential equation is converted into an inhomogeneous one. In this section, an idea is explored when finding analytical solutions of the first-order inhomogeneous linear differential equation.

Definition 2.3. The mathematical form of a first-order inhomogeneous linear differential equation is
$$
\frac{\mathrm{d} y(x)}{\mathrm{d} x}+f(x) y(x)=g(x) .
$$
It may be complicated with manual formulation methods. Some special tactics should be introduced. For instance, one can try to find an auxiliary function $\phi(x)$ such that
$$
\phi(x)\left[\frac{\mathrm{d} y(x)}{\mathrm{d} x}+f(x) y(x)\right]=\frac{\mathrm{d}}{\mathrm{d} x}(\phi(x) y(x))
$$

数学代写|微分方程代写differential equation代考|Analytical solutions of first-order differential equations

微分方程代写

数学代写|微分方程代写DIFFERENTIAL EQUATION代考|DIFFERENTIAL EQUATION SOLVABLE BY SIMPLE INTEGRALS

一阶微分方程有多种格式。因此,微分方程的解变得极其复杂,因为在解微分方程之前需要掌握大量的技巧和策略。对于一些微分方程,即使是掌握了大量方法和策略的专家,他/她也可能无法找到解析解。在本节中,讨论了一些简单的一阶微分方程,并探索了求解模式。
定义 2.1。一类微分方程的最简单形式是
d是(X)dX=F(X)
也可以简单地表示为是′(X)=F(X). 这个微分方程的解析解实际上是F(X),即
是(X)=∫F(X)dX+C.
这种微分方程的解实际上是给定函数的一阶不定积分。如果不定积分有解析表达式,则微分方程有解析解。否则,微分方程没有解析解。

数学代写|微分方程代写DIFFERENTIAL EQUATION代考|HOMOGENEOUS DIFFERENTIAL EQUATIONS

上述可通过积分直接求解的微分方程不是真正的微分方程。通常,微分方程也可能包含函数是(X)本身。仅使用直接不定积分求值方法不能直接求解此类微分方程。本节介绍简单的一阶齐次线性微分方程及其一般求解方法。

定义 2.2。一阶齐次线性微分方程的数学形式是
d是(X)dX+F(X)是(X)=0.
通过简单的转换,通过以下过程不难找到微分方程的解析解:
d是(X)是(X)=−F(X)dX.
然后可以发现
ln⁡是(X)=−∫F(X)dX.

最后,微分方程的解析解为
是(X)=C和−∫F(X)dX.
对于一阶微分方程,存在一个待定系数 C。如果函数的精确值是(X)在给定时间,用代数方程求解技术唯一确定C. 对于高阶微分方程,可能存在更多的待定系数。如果函数的某些值是(X)并且它的前几个导数是已知的,这样的方程的解析解可以唯一确定。

数学代写|微分方程代写DIFFERENTIAL EQUATION代考|INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

如果一个术语X添加到右侧功能G(X),原来的齐次微分方程被转换成一个不齐次方程。在本节中,探索一阶非齐次线性微分方程的解析解时的一个想法。

定义 2.3。一阶非齐次线性微分方程的数学形式是
d是(X)dX+F(X)是(X)=G(X).
手动制定方法可能会很复杂。应该引入一些特殊的战术。例如,可以尝试找到一种辅助功能φ(X)这样

数学代写|微分方程代写differential equation代考

数学代写|微分方程代写differential equation代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

怎么学好数论

图论代写

数论代写

算法代写

随机多项式代写

抽象代数代写

Related Posts

Leave a comment