如果你也在 怎样代写微分方程differential equation这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。微分方程differential equation在数学中,是将一个或多个未知函数及其导数联系起来的方程。在应用中,函数通常代表物理量,导数代表其变化率,而微分方程则定义了两者之间的关系。这种关系很常见;因此,微分方程在许多学科,包括工程、物理学、经济学和生物学中发挥着突出作用。
微分方程differential equation研究主要包括研究其解(满足每个方程的函数集合),以及研究其解的性质。只有最简单的微分方程可以用明确的公式求解;然而,一个给定的微分方程的解的许多属性可以在不精确计算的情况下确定。
my-assignmentexpert™ 微分方程differential equation作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的微分方程differential equation作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此微分方程differential equation作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在数学mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的微分方程differential equation代写服务。我们的专家在数学mathematics代写方面经验极为丰富,各种微分方程differential equation相关的作业也就用不着 说。
我们提供的微分方程differential equation及其相关学科的代写,服务范围广, 其中包括但不限于:
数学代写|微分方程代写differential equation代考|Conversion and solutions of differential equations in matrix form
In real applications, differential equations in matrix form are usually encountered. For instance, the Lagrangian equations in robotics. The corresponding differential equations in matrix form can be expressed as
$$
\boldsymbol{M} \boldsymbol{X}^{\prime \prime}(t)+\boldsymbol{C} \boldsymbol{X}^{\prime}(t)+\boldsymbol{K X}(t)=\boldsymbol{F} u(t)
$$
where $\boldsymbol{M}, \boldsymbol{C}$, and $\boldsymbol{K}$ are $n \times n$ matrices, while $\boldsymbol{X}$ and $\boldsymbol{F}$ are $n \times 1$ column vectors. Introducing the state vectors $\boldsymbol{x}{1}(t)=\boldsymbol{X}(t), \boldsymbol{x}{2}(t)=\boldsymbol{X}^{\prime}(t)$, we get $\boldsymbol{x}{1}^{\prime}(t)=\boldsymbol{X}{2}(t)$ and $\boldsymbol{x}{2}^{\prime}(t)=\boldsymbol{X}^{\prime \prime}(t)$. It can be seen from (4.4.1) that $$ \boldsymbol{X}^{\prime \prime}(t)=\boldsymbol{M}^{-1}\left[\boldsymbol{F} u(t)-\boldsymbol{C} \boldsymbol{X}^{\prime}(t)-\boldsymbol{K} \boldsymbol{X}(t)\right] $$ Now selecting the state vectors $\boldsymbol{x}(t)=\left[\boldsymbol{x}{1}^{\mathrm{T}}(t), \boldsymbol{x}{2}^{\mathrm{T}}(t)\right]^{\mathrm{T}}$, the state space model can be established as $$ \boldsymbol{x}^{\prime}(t)=\left[\begin{array}{c} \boldsymbol{x}{2}(t) \
\boldsymbol{M}^{-1}\left[\boldsymbol{F} u(t)-\boldsymbol{C} \boldsymbol{x}{2}(t)-\boldsymbol{K} \boldsymbol{x}{1}(t)\right]
\end{array}\right]
$$
数学代写|微分方程代写differential equation代考|Sylvester differential equations
Sylvester differential equations are commonly encountered matrix equations. The mathematical form and analytical solutions of Sylvester equation are studied in Section 2.5.3. In this section, numerical solutions are presented for Sylvester equations, and demonstrated through examples.
Compared with the analytical solution methods, there are special tricks in solving Sylvester equations numerically. A suitable set of state variables can be chosen to convert the given equations into first-order explicit differential equations. Consider again the mathematical form of a Sylvester differential equation
$$
\boldsymbol{X}^{\prime}(t)=\boldsymbol{A} \boldsymbol{X}(t)+\boldsymbol{X}(t) \boldsymbol{B}, \quad \boldsymbol{X}(0)=\boldsymbol{C}
$$
where $\boldsymbol{X}(t)$ is a matrix that can be expanded in the column-wise format as a column vector, which can then be implemented in MATLAB as $\boldsymbol{x}(t)=\boldsymbol{X}(:)$. With the vector representation, function $\boldsymbol{X}=$ reshape $(\boldsymbol{x}, n, m)$ can be used to convert it back to an $n \times m$ matrix. The following MATLAB function can be written to express Sylvester differential equation:
function $d x=c 4 m s y l v(t, x, A, B)$
$[n 1, m 1]=\operatorname{size}(A) ;[\mathrm{n} 2, \mathrm{~m} 2]=\operatorname{size}(\mathrm{B})$;
$X=r e s h a p e(x, n 1, n 2) ; d x=A * X+X * B ; d x=d x(:)$;
function $d x=c 4 m s y 1 v(t, x, A, B)$
${[n 1, m 1]=\operatorname{size}(A) ;[n 2, m 2]=\operatorname{size}(B) ; }$
$X=$ reshape $(x, n 1, n 2) ; d x=A * X+X * B ; d x=d x(:) ;$
where $\boldsymbol{A}$ and $\boldsymbol{B}$ are additional parameters. With this function, the Sylvester differential equation can be solved numerically employing solvers. The analytical solutions obtained in Section $2.5 .3$ can also be used to assess the accuracy and efficiency of the numerical solutions. An example is given next to demonstrate the numerical solutions of Sylvester differential equations.
数学代写|微分方程代写DIFFERENTIAL EQUATION代考|Riccati differential equations
Riccati differential equations are another commonly encountered matrix differential equations. The general form of such equations is
$$
\boldsymbol{P}^{\prime}(t)=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{P}(t)+\boldsymbol{P}(t) \boldsymbol{A}+\boldsymbol{P}(t) \boldsymbol{B P}(t)+\boldsymbol{C}
$$
where $\boldsymbol{B}$ and $\boldsymbol{C}$ are symmetric matrices. It is known at time $t_{\mathrm{n}}$ that the terminal value $\boldsymbol{P}\left(t_{\mathrm{n}}\right)$ is given. A numerical solution in the time interval $\left(t_{0}, t_{\mathrm{n}}\right)$ is expected.
To solve such equations numerically, they should be converted into the standard form of first-order explicit differential equations. Then numerical solvers can be applied. In mathematics, the column-wise vector expansion can be denoted as $\operatorname{vec}(\boldsymbol{P}(t))$. In MATLAB, $\boldsymbol{P}(:)$ can be used in direct implementation. If the vector is to be transformed back to a matrix, function reshape () can be called.
微分方程代写
数学代写|微分方程代写DIFFERENTIAL EQUATION代考|CONVERSION AND SOLUTIONS OF DIFFERENTIAL EQUATIONS IN MATRIX FORM
在实际应用中,通常会遇到矩阵形式的微分方程。例如,机器人学中的拉格朗日方程。相应的矩阵形式的微分方程可以表示为
米X′′(吨)+CX′(吨)+到X(吨)=F你(吨)
在哪里米,C, 和到是n×n矩阵,而X和F是n×1列向量。介绍状态向量$$
where $\boldsymbol{M}, \boldsymbol{C}$, and $\boldsymbol{K}$ are $n \times n$ matrices, while $\boldsymbol{X}$ and $\boldsymbol{F}$ are $n \times 1$ column vectors. Introducing the state vectors $\boldsymbol{x}{1}(t)=\boldsymbol{X}(t), \boldsymbol{x}{2}(t)=\boldsymbol{X}^{\prime}(t)$, we get $\boldsymbol{x}{1}^{\prime}(t)=\boldsymbol{X}{2}(t)$ and $\boldsymbol{x}{2}^{\prime}(t)=\boldsymbol{X}^{\prime \prime}(t)$. It can be seen from (4.4.1) that $$ \boldsymbol{X}^{\prime \prime}(t)=\boldsymbol{M}^{-1}\left[\boldsymbol{F} u(t)-\boldsymbol{C} \boldsymbol{X}^{\prime}(t)-\boldsymbol{K} \boldsymbol{X}(t)\right] $$ Now selecting the state vectors $\boldsymbol{x}(t)=\left[\boldsymbol{x}{1}^{\mathrm{T}}(t), \boldsymbol{x}{2}^{\mathrm{T}}(t)\right]^{\mathrm{T}}$, the state space model can be established as $$ \boldsymbol{x}^{\prime}(t)=\left[\begin{array}{c} \boldsymbol{x}{2}(t) \
\boldsymbol{M}^{-1}\left[\boldsymbol{F} u(t)-\boldsymbol{C} \boldsymbol{x}{2}(t)-\boldsymbol{K} \boldsymbol{x}{1}(t)\right]
\end{array}\right]
$$
数学代写|微分方程代写DIFFERENTIAL EQUATION代考|SYLVESTER DIFFERENTIAL EQUATIONS
西尔维斯特微分方程是常见的矩阵方程。Sylvester 方程的数学形式和解析解在 2.5.3 节中进行了研究。在本节中,给出了 Sylvester 方程的数值解,并通过示例进行了演示。
与解析求解方法相比,数值求解 Sylvester 方程组有一些特殊的技巧。可以选择一组合适的状态变量来将给定方程转换为一阶显式微分方程。再次考虑 Sylvester 微分方程的数学形式
X′(吨)=一种X(吨)+X(吨)乙,X(0)=C
在哪里X(吨)是一个矩阵,可以按列格式扩展为列向量,然后可以在 MATLAB 中实现为X(吨)=X(:). 用向量表示,函数X=重塑(X,n,米)可用于将其转换回n×米矩阵。可以编写以下 MATLAB 函数来表达 Sylvester 微分方程:
函数dX=C4米s是一世v(吨,X,一种,乙)
[n1,米1]=尺寸(一种);[n2, 米2]=尺寸(乙);
X=r和sH一种p和(X,n1,n2);dX=一种∗X+X∗乙;dX=dX(:);
功能dX=C4米s是1v(吨,X,一种,乙)
[n1,米1]=尺寸(一种);[n2,米2]=尺寸(乙);
X=重塑(X,n1,n2);dX=一种∗X+X∗乙;dX=dX(:);
在哪里一种和乙是附加参数。使用此函数,可以使用求解器对 Sylvester 微分方程进行数值求解。部分得到的解析解2.5.3也可用于评估数值解的准确性和效率。下面给出一个例子来演示 Sylvester 微分方程的数值解。
数学代写|微分方程代写DIFFERENTIAL EQUATION代考|RICCATI DIFFERENTIAL EQUATIONS
Riccati 微分方程是另一种常见的矩阵微分方程。这些方程的一般形式是
磷′(吨)=一种吨磷(吨)+磷(吨)一种+磷(吨)乙磷(吨)+C
在哪里乙和C是对称矩阵。一时为人所知吨n即终值磷(吨n)给出。时间间隔内的数值解(吨0,吨n)是期待。
为了对这些方程进行数值求解,应将它们转换为一阶显式微分方程的标准形式。然后可以应用数值求解器。在数学中,逐列向量展开可以表示为向量(磷(吨)). 在 MATLAB 中,磷(:)可用于直接实现。如果要将向量转换回矩阵,则函数 reshape可以调用。
数学代写|微分方程代写differential equation代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。