化学代写|有机化学代写organic chemistry代考|E2 Eliminations of H/Het and the E2/SN2 Competition

如果你也在 怎样代写有机化学organic chemistry这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。有机化学organic chemistry是化学的一个分支,研究含有碳-碳共价键的有机化合物的结构、性质和反应。对性质的研究包括物理和化学性质,以及对化学反应性的评估,以了解其行为。有机反应的研究包括天然产品、药物和聚合物的化学合成,以及在实验室和通过理论(in silico)研究单个有机分子。

有机化学organic chemistry研究的化学品范围包括碳氢化合物(只含碳和氢的化合物)以及以碳为基础但也含有其他元素的化合物,特别是氧、氮、硫、磷(包括在许多生化制品中)和卤素。有机金属化学是研究含有碳-金属键的化合物。此外,当代研究的重点是涉及其他有机金属的有机化学,包括镧系元素,但特别是过渡金属锌、铜、钯、镍、钴、钛和铬。

my-assignmentexpert™ 有机化学organic chemistry作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的有机化学organic chemistry作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此有机化学organic chemistry作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在化学Chemical作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的化学Chemical代写服务。我们的专家在有机化学organic chemistry代写方面经验极为丰富,各种有机化学organic chemistry相关的作业也就用不着 说。

我们提供的有机化学organic chemistry及其相关学科的代写,服务范围广, 其中包括但不限于:

化学代写|有机化学代写organic chemistry代考|E2 Eliminations of H/Het and the E2/SN2 Competition

化学代写|有机化学代写organic chemistry代考|Substrate Effects on the E2/SN2 Competition

Tables 4.1 and 4.2 summarize the typical substrate effects on the chemoselectivity of E2
vs SN2 reactions. These substrate effects are so pronounced because NaOEt was used as
base. As a reasonably strong base and a quite good nucleophile, NaOEt is able to convert a fair portion of many elimination substrates into SN2 products (see Section 4.4.2).

Table 4.1 gives the chemoselectivity of E2 eliminations from representative bromides of the type Rprim¬Br, Rsec¬Br, and Rtert¬B r. The fraction of E2 product increases in this sequence from 1 to 79 and to 100% and allows for the following generalization:
E2 eliminations with sterically unhindered bases can be carried out chemoselectively (i.e., without a competing SN2 reaction) only starting from tertiary alkyl halides and sulfonates. To obtain an E2 product from primary alkyl halides and sulfonates at all or
to obtain an E2 product from secondary alkyl halides and sulfonates exclusively, one must change the base (see Section 4.4.2).

Table 4.1 also allows one to identify reasons for the chemoselectivities listed therein.
According to Equation 4.3, they equal the ratio kE2: of the two competing reactions. According to Table 4.1, this ratio increases rapidly in the sequence Rprim¬Br,Rsec¬Br, and Rtert¬Br because the values become smaller and smaller in this order (for the reason, see Section 2.4.4) while the kE2 values become larger and larger.
There are two reasons for this increase in the kE2 values. The first reason is a statistical factor: the number of H atoms located in b-position(s) relative to the leaving group and that can be eliminated together with it is 3, 6, and 9, respectively, in the three bromides discussed. One can adjust the gross kE2 values of Table 4.1 for this factor by converting them to kE2-values per single H atom in a b-position. However, these numbers—“kE2 (per b H atom)” in Table 4.1¬still increase in the series Rprim¬Br →Rsec¬Br → Rtert¬Br. This second effect is due to the fact that the E2 eliminations considered lead to C“C double bonds with an increasing number of alkyl substituents: EtBr results in an unsubstituted, iPrBr in a monosubstituted, and tert-BuBr in a disubstituted alkene. The stability of olefins, as is well known, increases with the degree of alkylation. A certain fraction of this stability increase becomes noticeable in the transition state of E2 eliminations in the form of product-development control: The rate constant kE2 (per b H atom) is therefore smallest for the most unstable E2 product (ethene) and largest for the most stable E2 product (isobutene).

化学代写|有机化学代写organic chemistry代考|Base Effects on the E2/SN2 Competition

Chemoselective E2 eliminations can be carried out with sterically hindered, sufficiently strong bases. Their bulkiness causes them to attack at an $\mathrm{H}$ atom at the periphery of the molecule rather than at a $\mathrm{C}$ atom deep within the molecule. These bases are therefore called nonnucleophilic bases. The weaker nonnucleophilic bases include the bicyclic amidines DBN (diazabicyclononene) and DBU (diazabicycloundecene). These can be used to carry out chemoselective E2 eliminations even starting from primary and secondary alkyl halides and sulfonates (Figure 4.16).
$\beta$-Eliminations of epoxides lead to allyl alcohols after release of a high-energy (cf. Section 2.3) alkoxide ion as a leaving group. For this reaction to take place, the strongly basic bulky lithium dialkyl amides LDA (lithium diisopropyl amide), LTMP (lithium tetramethyl piperidide) or LiHMDS (lithium hexamethyl disilazide) shown in Figure $4.17$ are used. As for the amidine bases shown in Figure 4.16, the bulkiness of these amides guarantees that they are nonnucleophilic. They react, for example, with epoxides in chemoselective E2 reactions even when the epoxide contains a primary $\mathrm{C}$ atom that is easily attacked by nucleophiles (see, e.g., Figure 4.17).

化学代写|有机化学代写ORGANIC CHEMISTRY代考|A Stereoelectronic Effect on the E2/SN2 Competition

(4-tert-Butylcyclohexyl)trimethylammonium iodide and potassium-tert-butoxide ( $\mathrm{KO} t \mathrm{Bu}$ ) can undergo both an E2 and an $\mathrm{S}{\mathrm{N}}$ 2 reaction (Figure 4.18). However, the reactivity and chemoselectivity differ drastically depending on whether the cis- or the trans-configured cyclohexane derivative is the substrate. The cis isomer gives a $90: 10$ mixture of $\mathrm{E} 2$ and $\mathrm{S}{\mathrm{N}} 2$ products in a fast reaction. The trans isomer reacts much more slowly and gives only the substitution product. According to Equation 4.3, these findings mean that $k_{\mathrm{E} 2, \text { cis }}: k_{\mathrm{S}{\mathrm{N}} 2 \text {, cis }}=90: 10$ and $k{\mathrm{E} 2, \text { trans }}: k_{\mathrm{S}{\mathrm{N}}^{2} \text {,trans }}<1: 99$. A plausible assumption is that for the respective substitution reactions $k{\mathrm{S}{\mathrm{N}} 2, \text { cis }} \approx k{\mathrm{S}{\mathrm{N}} 2 \text {, trans. }}$. This, in turn, means that the opposite chemoselectivities of the two reactions in Figure $4.18$ arise almost exclusively from the fact that $k{\mathrm{E} 2, \text { cis }} \gg k_{\mathrm{E} 2, \text { trans }}$.

How this gradation of the $k_{\mathrm{E} 2}$ values comes about is easily understood by considering Figure $4.19$ and realizing the following: in the most stable transition state of an E2 elimination the half-broken ${ }^{\alpha} \mathrm{C} \cdots$ Het bond and the likewise half-broken ${ }^{\beta} \mathrm{C} \cdots$ $\mathrm{H}$ bond are oriented parallel. This is because the hybridization change at ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ from $s p^{3}$ to $s p^{2}$ hybridization has started in the transition state. As a result, $2 \mathrm{p}_{\mathrm{z}}$-like AOs are being formed as ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ and their increasingly effective overlap establishes the $\pi$ bond. In other words, coplanar ${ }^{\alpha} \mathrm{C} \cdots$ Het and ${ }^{\beta} \mathrm{C} \cdots \mathrm{H}$ bonds stabilize the transition state of an E2 elimination through a $\pi$-like interaction. Interactions of this type are possible in the most stable transition state of syn-eliminations as well as in the most stable transition state of anti-eliminations. When a substrate can assume both of these transition state geometries, the anti-elimination is always preferred. This is a consequence of the lower steric hindrance of the anti-transition state, in which the substituents at ${ }^{\alpha} \mathrm{C}$ vs ${ }^{\beta} \mathrm{C}$ are nearly staggered. The sterically more hindered syn transition state has a nearly eclipsed structure. In addition, there are reasons to believe that orbital overlap is better in the transition state of an anti-elimination.

化学代写|有机化学代写organic chemistry代考|E2 Eliminations of H/Het and the E2/SN2 Competition

有机化学代写

化学代写|有机化学代写ORGANIC CHEMISTRY代考|SUBSTRATE EFFECTS ON THE E2/SN2 COMPETITION

表 4.1 和 4.2 总结了典型的底物对 E2
与 SN2 反应的化学选择性的影响。这些底物效应非常明显,因为 NaOEt 被用作
碱。作为相当强的碱基和相当好的亲核试剂,NaOEt 能够将许多消除底物的相当一部分转化为 SN2 产物s和和小号和C吨一世这n4.4.2.

表 4.1 给出了从 Rprim-Br、Rsec-Br 和 Rtert-Br 类型的代表性溴化物中消除 E2 的化学选择性。E2 产物的比例在这个序列中从 1 增加到 79 和 100%,并允许以下概括:
可以化学选择性地进行具有空间上不受阻碍的碱基的 E2 消除一世.和.,在一世吨H这在吨一种C这米p和吨一世nG小号ñ2r和一种C吨一世这n仅从叔烷基卤化物和磺酸盐开始。要完全从伯烷基卤化物和磺酸盐中
获得 E2 产品,或仅从仲烷基卤化物和磺酸盐中获得 E2 产品,必须改变碱基s和和小号和C吨一世这n4.4.2.

表 4.1 还允许人们确定其中列出的化学选择性的原因。
根据方程 4.3,它们等于两个竞争反应的比率 kE2:。根据表 4.1,该比率在 Rprim-Br、Rsec-Br 和 Rtert-Br 的序列中迅速增加,因为这些值按此顺序变得越来越小F这r吨H和r和一种s这n,s和和小号和C吨一世这n2.4.4而 kE2 值越来越大。
kE2 值增加的原因有两个。第一个原因是一个统计因素:位于 b 位的 H 原子的数量s在所讨论的三种溴化物中,相对于离去基团,可以与它一起消除的分别是 3、6 和 9。可以通过将表 4.1 中的总 kE2 值转换为 b 位上每个 H 原子的 kE2 值来调整表 4.1 中的总 kE2 值。然而,这些数字——“kE2p和rbH一种吨这米” 在表 4.1 中,Rprim-Br →Rsec-Br → Rtert-Br 的系列仍然增加。第二个效果是由于考虑到的 E2 消除导致 C”C 双键具有越来越多的烷基取代基:EtBr 导致未取代,iPrBr 导致单取代,叔丁基溴导致二取代烯烃。众所周知,烯烃的稳定性随着烷基化程度的增加而增加。这种稳定性增加的一部分在产品开发控制形式的 E2 消除的过渡状态中变得明显: 速率常数 kE2p和rbH一种吨这米因此对于最不稳定的 E2 产品是最小的和吨H和n和和最大的最稳定的 E2 产品一世s这b在吨和n和.

化学代写|有机化学代写ORGANIC CHEMISTRY代考|BASE EFFECTS ON THE E2/SN2 COMPETITION

化学选择性 E2 消除可以用空间位阻的、足够强的碱进行。它们的笨重导致它们攻击H原子在分子的外围而不是在C分子深处的原子。因此这些碱基被称为非亲核碱基。较弱的非亲核碱包括双环脒 DBNd一世一种和一种b一世C是Cl这n这n和n和和 DBUd一世一种和一种b一世C是Cl这在nd和C和n和. 这些可用于进行化学选择性 E2 消除,甚至从伯和仲烷基卤化物和磺酸盐开始F一世G在r和4.16.
b-释放高能后,环氧化物的消除导致烯丙醇CF.小号和C吨一世这n2.3醇盐离子作为离去基团。为了使该反应发生,强碱性大体积二烷基酰胺锂 LDAl一世吨H一世在米d一世一世s这pr这p是l一种米一世d和, LTMPl一世吨H一世在米吨和吨r一种米和吨H是lp一世p和r一世d一世d和或 LiHMDSl一世吨H一世在米H和X一种米和吨H是ld一世s一世l一种和一世d和如图4.17被使用。至于图 4.16 中所示的脒碱基,这些酰胺的庞大性保证了它们是非亲核的。例如,它们在化学选择性 E2 反应中与环氧化物发生反应,即使环氧化物含有初级C容易被亲核试剂攻击的原子s和和,和.G.,F一世G在r和4.17.

化学代写|有机化学代写ORGANIC CHEMISTRY代考|A STEREOELECTRONIC EFFECT ON THE E2/SN2 COMPETITION

4−吨和r吨−乙在吨是lC是Cl这H和X是l三甲基碘化铵和叔丁醇钾$ķ这吨乙在$可以同时经历 ( $\mathrm{KO} t \mathrm{Bu}$ ) can undergo both an E2 and an $\mathrm{S}{\mathrm{N}}$ 2 reaction (Figure 4.18). However, the reactivity and chemoselectivity differ drastically depending on whether the cis- or the trans-configured cyclohexane derivative is the substrate. The cis isomer gives a $90: 10$ mixture of $\mathrm{E} 2$ and $\mathrm{S}{\mathrm{N}} 2$ products in a fast reaction. The trans isomer reacts much more slowly and gives only the substitution product. According to Equation 4.3, these findings mean that $k_{\mathrm{E} 2, \text { cis }}: k_{\mathrm{S}{\mathrm{N}} 2 \text {, cis }}=90: 10$ and $k{\mathrm{E} 2, \text { trans }}: k_{\mathrm{S}{\mathrm{N}}^{2} \text {,trans }}<1: 99$. A plausible assumption is that for the respective substitution reactions $k{\mathrm{S}{\mathrm{N}} 2, \text { cis }} \approx k{\mathrm{S}{\mathrm{N}} 2 \text {, trans. }}$. This, in turn, means that the opposite chemoselectivities of the two reactions in Figure $4.18$ arise almost exclusively from the fact that $k{\mathrm{E} 2, \text { cis }} \gg k_{\mathrm{E} 2, \text { trans }}$.

这种层次感如何ķ和2值的产生很容易通过考虑图来理解4.19并实现以下几点:在 E2 消除的最稳定过渡状态中,半断一种C⋯Het 键和同样断裂的键bC⋯ H键是平行取向的。这是因为杂交在一种C和bC从sp3到sp2杂交已经开始处于过渡状态。因此,2p和- 类似 AO 正在形成为一种C和bC它们日益有效的重叠确立了圆周率键。换句话说,共面一种C⋯和bC⋯H键通过 a 稳定 E2 消除的过渡态圆周率——类似的互动。这种类型的相互作用在最稳定的顺消除过渡态以及最稳定的反消除过渡态中都是可能的。当基材可以呈现这两种过渡态几何形状时,总是首选反消除。这是反过渡态的较低空间位阻的结果,其中取代基在一种C对比bC几乎是交错的。空间位阻更大的顺式过渡态具有几乎黯然失色的结构。此外,有理由相信轨道重叠在反消除的过渡态中更好。

化学代写|有机化学代写organic chemistry代考

化学代写|有机化学代写organic chemistry代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

电磁学代考

物理代考服务:
物理Physics考试代考、留学生物理online exam代考、电磁学代考、热力学代考、相对论代考、电动力学代考、电磁学代考、分析力学代考、澳洲物理代考、北美物理考试代考、美国留学生物理final exam代考、加拿大物理midterm代考、澳洲物理online exam代考、英国物理online quiz代考等。

光学代考

光学(Optics),是物理学的分支,主要是研究光的现象、性质与应用,包括光与物质之间的相互作用、光学仪器的制作。光学通常研究红外线、紫外线及可见光的物理行为。因为光是电磁波,其它形式的电磁辐射,例如X射线、微波、电磁辐射及无线电波等等也具有类似光的特性。

大多数常见的光学现象都可以用经典电动力学理论来说明。但是,通常这全套理论很难实际应用,必需先假定简单模型。几何光学的模型最为容易使用。

相对论代考

上至高压线,下至发电机,只要用到电的地方就有相对论效应存在!相对论是关于时空和引力的理论,主要由爱因斯坦创立,相对论的提出给物理学带来了革命性的变化,被誉为现代物理性最伟大的基础理论。

流体力学代考

流体力学力学的一个分支。 主要研究在各种力的作用下流体本身的状态,以及流体和固体壁面、流体流体之间、流体与其他运动形态之间的相互作用的力学分支。

随机过程代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。 例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表评论

您的电子邮箱地址不会被公开。 必填项已用 * 标注