如果你也在 怎样代写图论代写Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。图论代写Graph Theory可以用来模拟物理、生物、[社会和信息系统中的许多类型的关系和过程。许多实际问题都可以用图来表示。强调其在现实世界系统中的应用,网络一词有时被定义为一个图,其中的属性(如名称)与顶点和边相关联,而将现实世界系统作为网络来表达和理解的学科被称为网络科学。
图论代写Graph Theory在数学中,是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里的图是由顶点(也叫节点或点)组成的,这些顶点由边(也叫链接或线)连接。无向图和有向图是有区别的,前者的边对称地连接两个顶点,后者的边则不对称地连接两个顶点。图是离散数学的主要研究对象之一。
my-assignmentexpert™ 图论代写Graph Theory作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的图论代写Graph Theory作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此图论代写Graph Theory作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
我们提供的图论代写Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:
数学代写|图论代写Graph Theory代考|Online communities
In their landmark essay, Licklider and Taylor [1968] foresaw that computers would form a major communication device between people leading to the online communities much like the ones we know today. Indeed, perhaps one of the biggest successes of the Internet has been the ability to allow people to exchange information with each other by means of user-to-user messaging systems [Wams and van Steen, 2004]. The best known of these systems is e-mail, which has been around ever since the Internet came to life. Another well-known example is network news, through which users can post messages at electronic bulletin boards, and to which others may subsequently react, leading to discussion threads of all sorts and lengths. More recently instant messaging systems have become popular, allowing users to directly and interactively exchange messages with each other, possibly enhanced with information on various states of presence.
It is interesting to observe that from a technological point of view, most of these systems are really not that sophisticated and are still built with technology that has been around for decades. In many ways, these systems are simple, and have stayed simple, which allowed them to scale to sizes that are difficult to imagine. For example, it has been estimated that in 2006 almost 2 million e-mail messages were sent every second, by a total of more than 1 billion users. Admittedly, more than $70 \%$ of these messages were spam or contained viruses, but even then it is obvious that a lot of online communication took place. These numbers continue to rise.
More than the technology, it is interesting to see what these communication facilities do to the people who use them. What we are witnessing today is the rise of online communities in which people who have never met each other physically are sharing ideas, opinions, feelings, and so on. In fact, Dodds et al. [2003] have shown that also for online communities we are dealing with what is known as a small world. To put it simply, a small world is characterized by the fact that every two people can reach each other through a chain of just a handful of messages. This phenomenon is also known as the “six degrees of separation” [Watts, 2003] to which we will return extensively later.
Dodds et al. were interested to see whether e-mail users were capable of sending a message to a specific person without knowing that person’s address. In that case, the only thing you can do is send the message to one of your acquaintances, hoping that he or she is “closer” to the target than you are. With over 60,000 users participating in the experiment, they found that 384 out of the approximately 24,000 message chains made it to designated target people (there were 18 targets from 13 different countries all over the world). Of these 384 chains, $50 \%$ had a length smaller than $5-7$, depending on whether the target was located in the same country as where the chain started.
What we have just described is the phenomenon of messages traveling through a network of e-mail users. Users are linked by virtue of knowing each other, and the resulting network exhibits properties of small worlds, effectively connecting every person to the others through relatively small chains of such links. Describing and characterizing these and other networks forms the essence of network science.
Long before the Internet started to play a role in many people’s lives, sociologists and other researchers from the humanities have been looking at the structure of groups of people. In most cases, relatively small groups were considered, necessarily because analysis of large groups was often not feasible.
An important contribution to social network analysis came from Jacob Moreno who introduced sociograms in the 1930s. A sociogram can be seen as a graphical representation of a network: people are represented by dots (called vertices) and their relationships by lines connecting those dots (called edges). An example we will come across in Chapter 9 is one in which a class of children are asked who they like and dislike. It is not hard to imagine that we can use a graphical representation to represent who likes whom, as shown in Figure 1.3.
Decades later, under the influence of mathematicians, sociograms and such were formalized into graphs, our central object of study. As mentioned, graphs are mathematical objects, and as such they come along with a theoretical framework that allows researchers to focus on the structure of networks in order to make statements about the behavior of an entire social group.
Social network analysis has been important for the further development of graph theory, for example with respect to introducing metrics for identifying importance of people or groups. For example, a person having many connections to other people may be considered relatively important. Likewise, a person at the center of a network would seem to be more influential than someone at the edge. What graph theory provides us are the tools to formally describe what we mean by relatively important, or having more influence. Moreover, using graph theory we can easily come up with alternatives for describing importance and such. Having such tools has also facilitated being more precise in statements regarding the position or role that person has within a community.
图论代写
数学代写|图论代写GRAPH THEORY代考|ONLINE COMMUNITIES
在他们具有里程碑意义的文章中,利克莱德和泰勒1968预见到计算机将成为通向在线社区的人们之间的主要通信设备,就像我们今天所知道的那样。事实上,也许互联网最大的成功之一就是允许人们通过用户对用户的消息传递系统相互交换信息的能力。在一种米s一种nd在一种n小号吨和和n,2004. 这些系统中最著名的是电子邮件,自从 Internet 出现以来,它就一直存在。另一个广为人知的例子是网络新闻,用户可以通过它在电子公告板上发布消息,其他人随后可能会对此做出反应,从而引发各种长度的讨论线程。最近,即时消息传递系统变得流行起来,允许用户直接和交互地相互交换消息,并可能通过有关各种存在状态的信息来增强。
有趣的是,从技术的角度来看,这些系统中的大多数实际上并没有那么复杂,并且仍然使用已经存在了几十年的技术构建。在许多方面,这些系统都很简单,并且一直保持简单,这使得它们能够扩展到难以想象的大小。例如,据估计,2006 年每秒发送近 200 万封电子邮件,用户总数超过 10 亿。诚然,超过70%这些邮件中有垃圾邮件或包含病毒,但即便如此,显然也发生了很多在线交流。这些数字继续上升。
除了技术之外,有趣的是看到这些通信设施对使用它们的人做了什么。我们今天目睹的是在线社区的兴起,在这些社区中,从未见过面的人们正在分享想法、意见、感受等。事实上,Dodds 等人。2003已经表明,对于在线社区,我们正在处理所谓的小世界。简而言之,一个小世界的特点是,每两个人都可以通过一串信息链相互联系。这种现象也被称为“六度分离”在一种吨吨s,2003稍后我们将广泛返回。
多兹等人。有兴趣了解电子邮件用户是否能够在不知道该人地址的情况下向特定人发送消息。在这种情况下,您唯一能做的就是将消息发送给您的一位熟人,希望他或她比您更“接近”目标。有超过 60,000 名用户参与了实验,他们发现大约 24,000 条消息链中有 384 条到达指定的目标人群吨H和r和在和r和18吨一种rG和吨sFr这米13d一世FF和r和n吨C这在n吨r一世和s一种ll这在和r吨H和在这rld. 在这 384 条链中,50%长度小于5−7,取决于目标是否与链开始位于同一国家/地区。
我们刚才描述的是消息通过电子邮件用户网络传播的现象。用户通过相互了解而联系在一起,由此产生的网络呈现出小世界的特性,通过相对较小的此类链接链有效地将每个人与其他人联系起来。描述和表征这些网络和其他网络构成了网络科学的本质。
数学代写|图论代写GRAPH THEORY代考|TRADITIONAL SOCIAL NETWORKS
早在互联网开始在许多人的生活中发挥作用之前,社会学家和其他人文学科研究人员就一直在研究人群的结构。在大多数情况下,考虑了相对较小的群体,这必然是因为对大群体的分析通常是不可行的。
Jacob Moreno 对社交网络分析做出了重要贡献,他在 1930 年代引入了社会图。社会图可以看作是网络的图形表示:人用点表示C一种ll和d在和r吨一世C和s以及它们的关系通过连接这些点的线C一种ll和d和dG和s. 我们将在第 9 章遇到的一个例子是,一个班级的孩子被问到他们喜欢和不喜欢谁。不难想象,我们可以用图形表示来表示谁喜欢谁,如图 1.3 所示。
几十年后,在数学家的影响下,社会图等被形式化为图表,成为我们研究的中心对象。如前所述,图是数学对象,因此它们带有一个理论框架,允许研究人员专注于网络结构,以便对整个社会群体的行为做出陈述。
社交网络分析对于图论的进一步发展非常重要,例如在引入用于识别人或群体重要性的指标方面。例如,与其他人有很多联系的人可能被认为是相对重要的。同样,处于网络中心的人似乎比处于网络边缘的人更有影响力。图论为我们提供的是正式描述我们所说的相对重要或具有更大影响力的工具。此外,使用图论,我们可以很容易地想出描述重要性等的替代方案。拥有这样的工具还有助于更准确地说明个人在社区中的职位或角色。
数学代写|图论代写Graph Theory代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。