如果你也在 怎样代写傅里叶分析Fourier Analysis 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。傅里叶分析Fourier Analysis在数学中,傅里叶分析(/ˈfʊrieɪ, -iər/)是研究一般函数如何通过较简单的三角函数之和来表示或近似。傅里叶分析源于对傅里叶级数的研究,并以约瑟夫-傅里叶的名字命名,他表明将一个函数表示为三角函数之和可以大大简化对热传递的研究。
傅里叶分析Fourier Analysis的主题包含了一个巨大的数学范围。在科学和工程领域,将一个函数分解成振荡成分的过程通常被称为傅里叶分析,而从这些碎片中重建函数的操作被称为傅里叶合成。例如,确定一个音符中存在哪些频率成分,需要计算采样音符的傅里叶变换。然后,人们可以通过包括傅里叶分析中显示的频率成分来重新合成同一个声音。在数学中,傅里叶分析一词通常指的是对这两种操作的研究。
傅里叶分析Fourier Analysis代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的傅里叶分析Fourier Analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此傅里叶分析Fourier Analysis作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!
my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
数学代写|傅里叶分析代写Fourier Analysis代考|Sine and Cosine Series
IN THE PREVIOUS TWO EXAMPLES $(f(x)=|x|$ and $f(x)=x$ on $[-\pi, \pi])$, we have seen Fourier series representations that contain only sine or cosine terms. As we know, the sine functions are odd functions and thus sum to odd functions. Similarly, cosine functions sum to even functions. Such occurrences happen often in practice. Fourier representations involving just sines are called “sine series” and those involving just cosines (and the constant term) are called “cosine series.”
Another interesting result, based upon these examples, is that the original functions, $|x|$ and $x$, agree on the interval $[0, \pi]$. Note from Figures 2.11 through 2.13 that their Fourier series representations do as well. Thus, more than one series can be used to represent functions defined on finite intervals. All they need to do is agree with the function over that particular interval. Sometimes one of these series is more useful because it has additional properties needed in the given application.
We have made the following observations from the previous examples:
- There are several trigonometric series representations for a function defined on a finite interval.
- Odd functions on a symmetric interval are represented by sine series and even functions on a symmetric interval are represented by cosine series.
These two observations are related and are the subject of this section. We begin by defining a function $f(x)$ on interval $[0, L]$. We have seen that the Fourier series representation of this function appears to converge to a periodic extension of the function.
In Figure 2.18 , we show a function defined on $[0,1]$. To the right is its periodic extension to the whole real axis. This representation has a period of $L=1$. The bottom left plot is obtained by first reflecting $f$ about the $y$-axis to make it an even function and then graphing the periodic extension of this new function. Its period will be $2 L=2$. Finally, in the last plot, we flip the function about each axis and graph the periodic extension of the new odd function. It will also have a period of $2 L=2$.
数学代写|傅里叶分析代写Fourier Analysis代考|The Gibbs Phenomenon
WE HAVE SEEN THE GIBBS PHENOMENON when there is a jump discontinuity in the periodic extension of a function, whether the function originally had a discontinuity or developed one due to a mismatch in the values of the endpoints. This can be seen in Figures 2.13, 2.19, and 2.21. The Fourier series has a difficult time converging at the point of discontinuity and these graphs of the Fourier series show a distinct overshoot which does not go away. This is called the “Gibbs phenomenon”” and the amount of overshoot can be computed.
In one of our first examples, Example 2.3, we found the Fourier series representation of the piecewise defined function
$$
f(x)={1,0<x<\pi,-1, \pi<x<2 \pi
$$
to be
$$
f(x) \sim 4 \pi \Sigma k=1 \operatorname{cosin}(2 k-1) x 2 k-1
$$
In Figure 2.26, we display the sum of the first ten terms. Note the wiggles, overshoots and undershoots. These are seen more when we plot the representation for $x \in[-3 \pi, 3 \pi]$, as shown in Figure 2.27.
We note that the overshoots and undershoots occur at discontinuities in the periodic extension of $f(x)$. These occur whenever $f(x)$ has a discontinuity or if the values of $f(x)$ at the endpoints of the domain do not agree.
One might expect that we only need to add more terms. In Figure 2.28 we show the sum for twenty terms. Note the sum appears to converge better for points far from the discontinuities. But, the overshoots and undershoots are still present. Figure 2.29 and Figure 2.30 show magnified plots of the overshoot at $x=0$ for $N=100$ and $N=500$, respectively. We see that the overshoot persists. The peak is at about the same height, but its location seems to be getting closer to the origin. We will show how one can estimate the size of the overshoot.
傅里叶分析代写
数学代写|傅里叶分析代写FOURIER ANALYSIS代考|SEQUENCES OF FUNCTIONS
我们的近期目标是为学习傅立叶级数做准备,傅里叶级数是项为函数的级数。因此,在本节中,我们开始讨论函数级数和这些级数的收敛性。我 们将需要再次求助于部分和序列的收敛。这意味着我们真的需要从函数序列开始。一个函数序列就是一组函数 $f_n(x), n=1,2, \ldots$ 在公共域上定
在给定的值下评估每个函数序列 $x$ ,我们得到一个实数序列。和以前一样,我们可以问这个序列是否收敛。对域中的每个点执行此操作 $D$ ,然后我 们询问由此产生的极限集合是否在 $\mathrm{D}$ 上定义了一个函数。更正式地说,这使我们想到了逐点收敛的想法。
函数序列的逐点收敛。
函数序列 $f_n$ 逐点收敛于 $D$ 到一个极限 $g$ 如果
$$
\operatorname{limn}_{\rightarrow \infty} f n(x)=g(x)
$$
每个 $x \in D$. 更正式地说,我们这样写
$$
\operatorname{limn} \rightarrow \infty f n=g(\text { pointwise on } D)
$$
如果给出 $x \in D$ 和 $\epsilon>0$, 存在一个整数 $N$ 这样
$$
|f n(x)-g(x)|<\epsilon, \forall n \geq N
$$
数学代写|傅里叶分析代写FOURIER ANALYSIS代考|INFINITE SERIES OF FUNCTIONS
我们现在将注意力转向函数的无穷级数,这将构成我们研究傅立叶级数的基础。无限系列函数由下式给出 $\sum n=1 \infty f n(x), x \in D$.
使用的权力 $x$ ,无限系列函数的一个例子可能是 $\sum n=1 \infty_{\mathrm{xn}}, \mathrm{x} \in[-1,1]$. 为了研究这个级数的收敛性,我们可以用以下值代替 $x$ 并确定所得的一 系列数字是否收敛。一般来说,为了研究无穷级数函数的收敛性,我们会考虑 $N$ 第 th 部分和
$$
\mathrm{sN}(\mathrm{x})=\sum \mathrm{n}=1 \mathrm{Nfn}(\mathrm{x})
$$
并询问这个序列是否收敛。我们将通过定义函数的无穷级数的逐点一致收敛来开始回答这个问题。
无限级数的逐点收敛。
无限系列 $\Sigma f_j(x)$ 逐点收玫于 $f(x)$ 在 $D$ 如果给出 $x \in D$ ,和 $\epsilon>0$, 存在一个 $N$ 这样
$$
|f(x)-\operatorname{sn}(x)|<\epsilon $$ 对全部 $n>N$.
无穷级数的一致收敛。
无限系列 $\Sigma f_j(x)$ 一致地收玫于 $f(x)$ 在 $D$ 给予 $\epsilon>0$, 存在一个 $N$ 这样
对于所有人 $n>N$ 和所有 $x \in D$.
同样,我们在没有证明的情况下陈述了无穷级数函数一致收敛的以下重要性质:
均匀收敛在某些附加条件下提供了很好的特性,例如能够逐项积分或微分。
- 均匀收敛意味着逐点收敛。
- 如果 $f_n$ 是连续的 $D \mathrm{~ , 和 ~} \sum \mathrm{n} \propto \mathrm{fn}$ 一致地收敛于 $f$ 在 $D$ ,然后 $f$ 是连续的 $D$.
- 如果 $f_n$ 是连续的 $[\mathrm{a}, \mathrm{b}] \subset \mathrm{D}, \Sigma \mathrm{n} \infty \mathrm{fn}$ 均匀收敛于 $D$ 到 $g$ ,和 $\int \mathrm{abfn}(\mathrm{x}) \mathrm{dx}$ 存在,那么
$$
\sum n \infty \int a b f n(x) d x=\int a b \sum n \infty f n(x) d x=\int a b g(x) d x
$$ - 如果 $\mathrm{fn}^{\prime}$ 连续 $[\mathrm{a}, \mathrm{b}] \subset \mathrm{D}, \Sigma \mathrm{n} \infty f$ f逐点收敛于 $g$ 在 $D$ ,和 $\sum n \infty f n^{\prime}$ 均匀收敛于 $D$ ,然后 $\sum n \infty f n^{\prime}(\mathrm{x})=\mathrm{ddx}\left(\sum \mathrm{n} \infty \mathrm{fn}(\mathrm{x})\right)=\mathrm{g}^{\prime}(\mathrm{x})$ 为了 $x \in(a, b)$
数学代写|傅里叶分析代写Fourier Analysis代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。