如果你也在 怎样代写贝叶斯分析Bayesian Analysis 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。贝叶斯分析Bayesian Analysis一种统计推断方法(以英国数学家托马斯-贝叶斯命名),它允许人们将关于人口参数的先验信息与样本中包含的信息证据相结合,以指导统计推断过程。首先指定一个感兴趣的参数的先验概率分布。然后通过应用贝叶斯定理获得并结合证据,为参数提供一个后验概率分布。后验分布为有关该参数的统计推断提供了基础。
贝叶斯分析Bayesian Analysis自1763年以来,我们现在所知道的贝叶斯统计学并没有一个明确的运行。尽管贝叶斯的方法被拉普拉斯和当时其他领先的概率论者热情地接受,但在19世纪却陷入了不光彩的境地,因为他们还不知道如何正确处理先验概率。20世纪上半叶,一种完全不同的理论得到了发展,现在称为频繁主义统计学。但贝叶斯思想的火焰被少数思想家保持着,如意大利的布鲁诺-德-菲内蒂和英国的哈罗德-杰弗里斯。现代贝叶斯运动开始于20世纪下半叶,由美国的Jimmy Savage和英国的Dennis Lindley带头,但贝叶斯推断仍然极难实现,直到20世纪80年代末和90年代初,强大的计算机开始广泛使用,新的计算方法被开发出来。随后,人们对贝叶斯统计的兴趣大增,不仅导致了贝叶斯方法论的广泛研究,也导致了使用贝叶斯方法来解决天体物理学、天气预报、医疗保健政策和刑事司法等不同应用领域的迫切问题。
同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!
my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!
统计代写|贝叶斯分析代考Bayesian Analysis代写|Variants of the NR and EM algorithms
The Newton-Raphson and Expectation-Maximisation algorithms can be modified and combined in various ways to produce a number of useful variants or ‘hybrids’. For example, the NR algorithm can be used at each M-Step of the EM algorithm to maximise the Q-function.
If the EM algorithm is applied to find the mode of a parameter vector, say $\theta=\left(\theta_1, \theta_2\right)$, then the multivariate $\mathrm{NR}$ algorithm for doing this may be problematic and one may consider using the ECM algorithm (where $C$ stands for Conditional).
The idea is, at each M-Step, to maximise the Q-function with respect to $\theta_1$, with $\theta_2$ fixed at its current value; and then to maximise the Q-function with respect to $\theta_2$, with $\theta_1$ fixed at its current value.
If each of these conditional maximisations is achieved via the $\mathrm{NR}$ algorithm, the procedure can be modified to become the ECMI algorithm. This involves applying only one step of each $\mathrm{NR}$ algorithm (rather than finding the exact conditional maximum). In many cases the ECM1 algorithm will be more efficient at finding the posterior mode than the ECM algorithm.
Sometimes, when the simultaneous solution of several equations via the multivariate NR algorithm is problematic, a more feasible solution is to apply a suitable CNR algorithm (where again $C$ stands for Conditional).
For example, suppose we wish to solve two equations simultaneously, say:
$$
\begin{aligned}
& g_1(a, b)=0 \
& g_2(a, b)=0,
\end{aligned}
$$
for $a$ and $b$. Then it may be convenient to define the function
$$
g(a, b)=g_1(a, b)^2+g_2(a, b)^2
$$
which clearly has a minimum value of zero at the required solutions for $a$ and $b$.
This suggests that we iterate two steps as follows:
Step 1. Minimise $g(a, b)$ with respect to $a$, with $b$ held fixed.
Step 2. Minimise $g(a, b)$ with respect to $b$, with $a$ held fixed.
统计代写|贝叶斯分析代考Bayesian Analysis代写|Integration techniques
Bayesian inference typically involves a great deal of integration (and/or summation). For example, consider the posterior density
$$
f(\theta \mid y)=6 \theta^5, 0<\theta<1
$$
(which featured in previous exercise involving the binomial-beta model) and suppose that we wish to find the posterior mean estimate of $\lambda=\theta^2$. This estimate is
$$
\hat{\lambda}=E\left(\theta^2 \mid y\right)=\int_0^1 \theta^2 \times\left(6 \theta^5\right) d \theta=0.75 .
$$
But what if this integral did not have a simple analytical solution?
In that case, we could consider a number of other strategies. First, we might re-express the posterior mean as
$$
\hat{\lambda}=\int \lambda f(\lambda \mid y) d \lambda
$$
where, using the method of transformation,
$$
f(\lambda \mid y)=f(\theta \mid y)\left|\frac{d \theta}{d \lambda}\right|=6\left(\lambda^{1 / 2}\right)^5\left|\frac{1}{2} \lambda^{-1 / 2}\right|=3 \lambda^2, \quad 0<\lambda<1,
$$
so that
$$
\hat{\lambda}=\int_0^1 \lambda\left(3 \lambda^2\right) d \lambda=0.75 .
$$
If this strategy does not help, we may then consider using a numerical integration technique.
For example, we could apply the integrate() function in $\mathrm{R}$ to get $\hat{\lambda}=0.75$, as follows:
gfun = function(t) $\left{6^* \mathrm{t}^{\wedge} 7\right}$ # Define the function to be integrated integrate(f=gfun,lower $=0$, upper $=1)$ \$value $# 0.75$
In some cases the function requiring integration is very complicated or does not have a closed form expression. In that case, direct application of the integrate() function may not work or be practicable, and then it may be useful to apply the trapezoidal rule or Simpson’s rule to evaluate the integral.
贝叶斯分析代写
统计代写|贝叶斯分析代考Bayesian Analysis代写|Variants of the NR and EM algorithms
贝叶斯推理通常涉及大量的积分(和/或求和)。例如,考虑后验密度
$$
f(\theta \mid y)=6 \theta^5, 0<\theta<1
$$
(在之前涉及二项- β模型的练习中),并假设我们希望找到$\lambda=\theta^2$的后验均值估计。这个估计是
$$
\hat{\lambda}=E\left(\theta^2 \mid y\right)=\int_0^1 \theta^2 \times\left(6 \theta^5\right) d \theta=0.75 .
$$
但是如果这个积分没有一个简单的解析解呢?在这种情况下,我们可以考虑一些其他的策略。首先,我们可以将后验均值重新表示为
$$
\hat{\lambda}=\int \lambda f(\lambda \mid y) d \lambda
$$
,其中,使用变换方法
$$
f(\lambda \mid y)=f(\theta \mid y)\left|\frac{d \theta}{d \lambda}\right|=6\left(\lambda^{1 / 2}\right)^5\left|\frac{1}{2} \lambda^{-1 / 2}\right|=3 \lambda^2, \quad 0<\lambda<1,
$$
,以便
$$
\hat{\lambda}=\int_0^1 \lambda\left(3 \lambda^2\right) d \lambda=0.75 .
$$
如果此策略不起作用,我们可以考虑使用数值积分技术。
统计代写|贝叶斯分析代考Bayesian Analysis代写|Integration techniques
贝叶斯推理通常涉及大量的积分(和/或求和)。例如,考虑后验密度
$$
f(\theta \mid y)=6 \theta^5, 0<\theta<1
$$
(在之前涉及二项- β模型的练习中),并假设我们希望找到$\lambda=\theta^2$的后验均值估计。这个估计是
$$
\hat{\lambda}=E\left(\theta^2 \mid y\right)=\int_0^1 \theta^2 \times\left(6 \theta^5\right) d \theta=0.75 .
$$
但是如果这个积分没有一个简单的解析解呢?在这种情况下,我们可以考虑一些其他的策略。首先,我们可以将后验均值重新表示为
$$
\hat{\lambda}=\int \lambda f(\lambda \mid y) d \lambda
$$
,其中,使用变换方法
$$
f(\lambda \mid y)=f(\theta \mid y)\left|\frac{d \theta}{d \lambda}\right|=6\left(\lambda^{1 / 2}\right)^5\left|\frac{1}{2} \lambda^{-1 / 2}\right|=3 \lambda^2, \quad 0<\lambda<1,
$$
,以便
$$
\hat{\lambda}=\int_0^1 \lambda\left(3 \lambda^2\right) d \lambda=0.75 .
$$
如果此策略不起作用,我们可以考虑使用数值积分技术。
例如,我们可以应用$\mathrm{R}$中的integrate()函数得到$\hat{\lambda}=0.75$,如下所示:
gfun = function(t) $\left{6^* \mathrm{t}^{\wedge} 7\right}$ #定义要积分的函数integrate(f=gfun,lower $=0$, upper $=1)$ $value $# 0.75$
在某些情况下,需要积分的函数非常复杂或没有封闭形式表达式。在这种情况下,直接应用integrate()函数可能不起作用或不可行,然后应用梯形法则或辛普森法则来计算积分可能有用。
统计代写|贝叶斯分析代考Bayesian Analysis代写 请认准exambang™. exambang™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。