Scroll Top
19th Ave New York, NY 95822, USA

数学代写|傅里叶分析代写Fourier Analysis代考|TMA4170

如果你也在 怎样代写傅里叶分析Fourier Analysis 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。傅里叶分析Fourier Analysis的四个核心理论的数学——傅里叶级数的经典理论,傅里叶变换的经典理论,傅里叶变换的广义理论和离散傅里叶变换的理论.

傅里叶分析Fourier Analysis傅里叶变换是傅里叶分析的基础,就像骨髓对人的骨头一样。它是所有振荡积分之父,也是将函数从空间域转移到频率域的强大变换。通过这样做,它颠倒了函数的本地化属性。然后,神奇的是,如果再应用一次,它会返回由反射组成的函数。更重要的是,它改变了我们对谐波分析的观点。它把卷积变成乘法,把平移变成调制,把膨胀膨胀变成收缩膨胀,而它在无穷远处的衰减编码了关于函数局部平滑的信息。

傅里叶分析Fourier Analysis代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的傅里叶分析Fourier Analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此傅里叶分析Fourier Analysis作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

数学代写|傅里叶分析代写Fourier Analysis代考|TMA4170

数学代写|傅里叶分析代写Fourier Analysis代考|Lack of Orthogonality on $L^p$

We discuss two examples indicating why (5.1.1) cannot hold if the exponent 2 is replaced by some other exponent $q \neq 2$. More precisely, we show that if the functions $f_j$ have Fourier transforms supported in disjoint sets, then the inequality
$$
\left|\sum_j f_j\right|_{L^p}^p \leq C_p \sum_j\left|f_j\right|_{L^p}^p
$$
cannot hold if $p>2$, and similarly, the inequality
$$
\sum_j\left|f_j\right|_{L^p}^p \leq C_p\left|\sum_j f_j\right|_{L^p}^p
$$
cannot hold if $p<2$. In both (5.1.31) and (5.1.32) the constants $C_p$ are supposed to be independent of the functions $f_j$.
Example 5.1.8. Pick a Schwartz function $\zeta$ whose Fourier transform is positive and supported in the interval $|\xi| \leq 1 / 4$. Let $N$ be a large integer and let $f_j(x)=$ $e^{2 \pi i j x} \zeta(x)$. Then $\widehat{f}j(\xi)=\widehat{\zeta}(\xi-j)$ and the $\widehat{f}_j$, s have disjoint Fourier transforms. We obviously have $$ \sum{j=0}^N\left|f_j\right|_{L^p}^p=(N+1)|\zeta|_{L^p}^p .
$$
On the other hand, we have the estimate
$$
\begin{aligned}
\left|\sum_{j=0}^N f_j\right|_{L^p}^p & =\int_{\mathbf{R}}\left|\frac{e^{2 \pi i(N+1) x}-1}{e^{2 \pi i x}-1}\right|^p|\zeta(x)|^p d x \
& \geq c \int_{|x|<\frac{1}{10}(N+1)^{-1}} \frac{(N+1)^p|x|^p}{|x|^p}|\zeta(x)|^p d x \ & =C_\zeta(N+1)^{p-1}, \end{aligned} $$ since $\zeta$ does not vanish in a neighborhood of zero. We conclude that (5.1.31) cannot hold for this choice of $f_j$ ‘s for $p>2$.

数学代写|傅里叶分析代写FOURIER ANALYSIS代考|Two Multiplier Theorems

We have used the Calderón-Zygmund decomposition to prove weak type $(1,1)$ boundedness for singular integral and maximal singular integral operators, assuming that these operators are already $L^2$ bounded. It is therefore natural to ask for sufficient conditions that imply $L^2$ boundedness for such operators. Precisely, what are sufficient conditions on functions $K$ on $\mathbf{R}^n \backslash{0}$ so that the corresponding singular and maximal singular integral operators associated with $K$ are $L^2$ bounded? We saw in Section 4.2 that if $K$ has the special form $K(x)=\Omega(x /|x|) /|x|^n$ for some $\Omega \in L^1\left(\mathbf{S}^{n-1}\right)$ with mean value zero, then condition (4.2.16) is necessary and sufficient for the $L^2$ boundedness of $T$, while the $L^2$ boundedness of $T^{(*)}$ requires the stronger smoothness condition (4.2.23).
For the general $K$ considered in this section (for which the corresponding operator does not necessarily commute with dilations), we only give some sufficient conditions for $L^2$ boundedness of $T$ and $T^{(* *)}$.
Throughout this section $K$ denotes a locally integrable function on $\mathbf{R}^n \backslash{0}$ that satisfies the “size”‘ condition
$$
\sup {R>0} \int{R \leq|x| \leq 2 R}|K(x)| d x=A_1<\infty, $$ the “smoothness” condition $$ \sup {y \neq 0} \int{|x| \geq 2|y|}|K(x-y)-K(x)| d x=A_2<\infty, $$ and the “cancellation” condition $$ \sup {0{R_1<|x|0$. As mentioned earlier, condition (4.4.2) is often referred to as Hörmander’s condition. In this section we show that these three conditions give rise to convolution operators that are bounded on $L^p$.


数学代写|傅里叶分析代写Fourier Analysis代考|TMA4170

傅里叶分析代写

数学代写|傅里叶分析代写Fourier Analysis代考|Lack of Orthogonality on $L^p$

我们讨论两个例子,说明为什么(5.1.1)不能成立,如果指数2被一些其他指数$q \neq 2$取代。更准确地说,我们证明了如果函数$f_j$在不相交的集合中有傅里叶变换,那么不等式
$$
\left|\sum_j f_j\right|{L^p}^p \leq C_p \sum_j\left|f_j\right|{L^p}^p
$$
不能hold住$p>2$,同样,不等式也不能hold住
$$
\sum_j\left|f_j\right|{L^p}^p \leq C_p\left|\sum_j f_j\right|{L^p}^p
$$
hold不住了$p<2$。在(5.1.31)和(5.1.32)中,常数$C_p$应该独立于函数$f_j$。 例5.1.8。选择一个Schwartz函数$\zeta$它的傅里叶变换是正的并且在$|\xi| \leq 1 / 4$区间内被支持。设$N$是一个大整数,设$f_j(x)=$$e^{2 \pi i j x} \zeta(x)$。然后$\widehat{f}j(\xi)=\widehat{\zeta}(\xi-j)$和$\widehat{f}j$ s有不相交的傅里叶变换。我们有$$ \sum{j=0}^N\left|f_j\right|{L^p}^p=(N+1)|\zeta|{L^p}^p . $$ 另一方面,我们有估算值 $$ \begin{aligned} \left|\sum{j=0}^N f_j\right|{L^p}^p & =\int{\mathbf{R}}\left|\frac{e^{2 \pi i(N+1) x}-1}{e^{2 \pi i x}-1}\right|^p|\zeta(x)|^p d x \ & \geq c \int_{|x|<\frac{1}{10}(N+1)^{-1}} \frac{(N+1)^p|x|^p}{|x|^p}|\zeta(x)|^p d x \ & =C_\zeta(N+1)^{p-1}, \end{aligned} $$因为$\zeta$不会在零附近消失。我们得出结论,(5.1.31)不能对$p>2$的选择$f_j$成立。

数学代写|傅里叶分析代写FOURIER ANALYSIS代考|Two Multiplier Theorems

我们利用Calderón-Zygmund分解证明了奇异积分算子和极大奇异积分算子的弱型$(1,1)$有界性,假设这些算子已经是$L^2$有界。因此,很自然地要求对这些算子给出L^2有界性的充分条件。确切地说,函数$K$在$\mathbf{R}^n \反斜杠{0}$上的充分条件是什么,使得与$K$相关的奇异和最大奇异积分算子是$L^2$有界的?在4.2节中我们看到,如果$K$对于L^1\左(\mathbf{S}^{n-1}右)$ $具有特殊形式$K(x)=\Omega(x /|x|) /|x|^n$,则条件(4.2.16)是$T$的$L^2$有界性的充分必要条件,而$T^{()}$的$L^2$有界性需要更强的平滑性条件(4.2.23)。 对于本节考虑的一般$K$(其对应算子不一定与扩张交换),我们仅给出$T$和$T^{( *)}$的$L^2$有界性的一些充分条件。
在本节中,$K$表示$\mathbf{R}^n \反斜杠{0}$上满足“size”条件的局部可积函数
$$
int \一口{R > 0} \ R \ {leq | | \ leq x 2 R} | K (x) | d x = A_1 < \ infty, $ $ $ $ \“平滑”条件一口{y \ neq 0} \ int x{| | \组2 y | |} | K – K (x – y) (x) | d x = a₂< \ infty, $ $ $ $ \一口,“取消”条件{0 {R_1 x < | | 0美元。如前所述,条件(4.4.2)通常被称为Hörmander的条件。在本节中,我们将证明这三个条件产生了在L^p$上有界的卷积算子。

数学代写|傅里叶分析代写Fourier Analysis代考

数学代写|傅里叶分析代写Fourier Analysis代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment