Scroll Top
19th Ave New York, NY 95822, USA

数学代写|现代代数代考Modern Algebra代写|MATH310

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

现代代数Modern Algebra代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的现代代数Modern Algebra作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此现代代数Modern Algebra作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

数学代写|现代代数代考Modern Algebra代写|MATH310

数学代写|现代代数代考Modern Algebra代写|Some Results on Finite Abelian Groups (Optional)

The aim of this section is to sample the flavor of more advanced work in groups while maintaining an acceptable level of rigor in the presentation. We attempt to achieve this balance by restricting our attention to proofs of results for abelian groups. There are instances where more general results hold, but their proofs are beyond the level of this text. In most instances of this sort, the more general results are stated informally and without proof.
The following definition of a p-group is fundamental to this entire section.

A p-group can be finite or infinite. Although we do not prove it here, a finite group is a $p$-group if and only if its order is a power of $p$. Whether or not a group is abelian has nothing at all to do with whether it is a p-group. This is brought out in the following example.

Example 1 With $p=2$, we can easily exhibit three $p$-groups of order 8 .
a. Consider first the cyclic group $C_8=\langle a\rangle$ of order 8 generated by the permutation $a=(1,2,3,4,5,6,7,8)$ :
Each of $a, a^3, a^5$, and $a^7$ has order 8 .
$a^2$ and $a^6$ have order 4 .
$a^4$ has order 2 .
The identity $e$ has order 1 .
Thus $C_8$ is a 2-group.
b. Consider now the quaternion group $G={ \pm 1, \pm i, \pm j, \pm k}$ of Exercise 34 in Section 3.1:
Each of the elements $\pm i, \pm j, \pm k$ has order 4 .
-1 has order 2 .
1 has order 1.
Hence $G$ is another 2-group of order 8 .
c. Last, consider the octic group $D_4=\left{e, \alpha, \alpha^2, \alpha^3, \beta, \gamma, \Delta, \theta\right}$ of Example 3 in Section 4.5:
Each of $\alpha$ and $\alpha^3$ has order 4.
Each of $\alpha^2, \beta, \gamma, \Delta, \theta$ has order 2 .
The identity $e$ has order 1 .
Thus $D_4$ is also a 2-group of order 8 .

数学代写|现代代数代考Modern Algebra代写|Cauchy’stt Theorem for Abelian Groups

If $G$ is an abelian group of order $n$ and $p$ is a prime such that $p \mid n$, then $G$ has at least one element of order $p$.

Proof The proof is by induction on the order $n$ of $G$ and uses the Second Principle of Finite Induction. For $n=1$, the theorem holds by default.

Now let $k$ be a positive integer, assume that the theorem is true for all positive integers $n<k$, and let $G$ be an abelian group of order $k$. Also, suppose that the prime $p$ is a divisor of $k$.
Consider first the case where $G$ has only the two subgroups ${0}$ and $G$. Then any $a \neq 0$ in $G$ must be a generator of $G, G=\langle a\rangle$. It follows from Exercise 38 of Section 3.4 that the order $k$ of $G$ must be a prime. Since $p$ divides this order, $p$ must equal $k$, and $G$ actually has $p-1$ elements of order $p$, by Theorem 3.26.

Now consider the case where $G$ has a nontrivial subgroup $H$; that is, $H \neq{0}$ and $H \neq G$, so that $1<|H|<k$. If $p$ divides $|H|$, then $H$ contains an element of order $p$ by the induction hypothesis, and the theorem is true for $G$. Suppose then that $p$ does not divide $|H|$. Since $G$ is abelian, $H$ is normal in $G$, and the quotient group $G / H$ has order
$$
|G / H|=\frac{|G|}{|H|} .
$$
We have
$$
|G|=|H| \cdot|G / H|,
$$

so $p$ divides the product $|H| \cdot|G / H|$. Since $p$ is a prime and $p$ does not divide $|H|, p$ must divide $|G / H|<|G|=k$. Applying the induction hypothesis, we see that the abelian group $G / H$ has an element $b+H$ of order $p$. Then
$$
H=p(b+H)=p b+H,
$$
and therefore $p b \in H$, where $b \notin H$. Let $r=|H|$. The order of $p b$ must be a divisor of $r$ so that $r(p b)=0$ and $p(r b)=0$. Since $p$ is a prime and $p \nmid r$, then $p$ and $r$ are relatively prime. Hence there exist integers $u$ and $v$ such that $p u+r v=1$.

数学代写|现代代数代考Modern Algebra代写|MATH310

现代代数代写

数学代写|现代代数代考Modern Algebra代写|Some Results on Finite Abelian Groups (Optional)

本节的目的是在保持可接受的严谨性水平的同时,在小组中尝试更高级的工作。我们试图通过将我们的注意力限制在阿贝尔群的结果证明上来达到这种平衡。有些情况下,更一般的结果成立,但他们的证明超出了这篇文章的水平。在大多数这种情况下,更一般的结果是非正式地陈述的,没有证据。
下面p群的定义是本节的基础。

p群可以是有限的,也可以是无限的。虽然这里我们没有证明,但当且仅当一个有限群的阶是$p$的幂时,它是$p$ -群。一个群是否是阿贝尔群与它是否是p群没有任何关系。下面的例子说明了这一点。

使用$p=2$,我们可以很容易地展示三个8阶的$p$ -群。
a.首先考虑由排列$a=(1,2,3,4,5,6,7,8)$生成的8阶循环群$C_8=\langle a\rangle$:
$a, a^3, a^5$和$a^7$都是(8)阶。
$a^2$和$a^6$有顺序4。
$a^4$的阶为2。
单位$e$的阶为1。
因此$C_8$是2基团。
b.现在考虑3.1节练习34的四元数群$G={ \pm 1, \pm i, \pm j, \pm k}$:
每个元素$\pm i, \pm j, \pm k$的阶为4。
-1的阶是2。
1有o (1)
因此$G$是另一个8阶的2组。
c.最后,考虑4.5节例3的octic组$D_4=\left{e, \alpha, \alpha^2, \alpha^3, \beta, \gamma, \Delta, \theta\right}$:
$\alpha$和$\alpha^3$的顺序都是4。
每个$\alpha^2, \beta, \gamma, \Delta, \theta$都是2阶。
单位$e$的阶为1。
因此$D_4$也是一个8阶的2-基团。

数学代写|现代代数代考Modern Algebra代写|Cauchy’stt Theorem for Abelian Groups

如果$G$是一个阶为$n$的阿贝尔群,并且$p$是一个质数,使得$p \mid n$,那么$G$至少有一个阶为$p$的元素。

这个证明是用归纳法对$n$ ($G$)的顺序进行的,并使用了有限归纳法第二原理。对于$n=1$,定理默认成立。

现在设$k$是一个正整数,假设定理对所有正整数$n<k$都成立,设$G$是一个阶为$k$的阿贝尔群。同样,假设质数$p$是$k$的一个约数。
首先考虑$G$只有两个子组${0}$和$G$的情况。那么$G$中的任何$a \neq 0$都必须是$G, G=\langle a\rangle$的生成器。从第3.4节的练习38可以得出,$G$的顺序$k$必须是素数。由于$p$除以这个顺序,因此$p$一定等于$k$,根据定理3.26,$G$实际上有$p-1$个顺序为$p$的元素。

现在考虑$G$有一个非平凡子群$H$的情况;也就是$H \neq{0}$和$H \neq G$,所以$1<|H|<k$。如果$p$除$|H|$,则根据归纳假设,$H$包含一个阶为$p$的元素,并且该定理对$G$成立。假设$p$不能除$|H|$。因为$G$是阿贝尔的,所以$H$在$G$中是正规的,商群$G / H$是有序的
$$
|G / H|=\frac{|G|}{|H|} .
$$
我们有
$$
|G|=|H| \cdot|G / H|,
$$

$p$除以$|H| \cdot|G / H|$。因为$p$是质数,$p$不能除,所以$|H|, p$必须除$|G / H|<|G|=k$。应用归纳假设,我们看到阿贝尔群$G / H$有一个阶为$p$的元素$b+H$。然后
$$
H=p(b+H)=p b+H,
$$
因此是$p b \in H$,其中$b \notin H$。让$r=|H|$。$p b$的顺序必须是$r$的约数,以便$r(p b)=0$和$p(r b)=0$。因为$p$是质数,$p \nmid r$是质数,所以$p$和$r$是相对质数。因此存在整数$u$和$v$,使得$p u+r v=1$。

数学代写|现代代数代考Modern Algebra代写

数学代写|现代代数代考Modern Algebra代写 请认准exambang™. exambang™为您的留学生涯保驾护航。

Related Posts

Leave a comment