Scroll Top
19th Ave New York, NY 95822, USA

计算机代写|机器学习代写Machine Learning代考|Free Energy

如果你也在 怎样代写机器学习Machine Learning 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。机器学习Machine Learning是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

机器学习Machine Learning程序可以在没有明确编程的情况下执行任务。它涉及到计算机从提供的数据中学习,从而执行某些任务。对于分配给计算机的简单任务,有可能通过编程算法告诉机器如何执行解决手头问题所需的所有步骤;就计算机而言,不需要学习。对于更高级的任务,由人类手动创建所需的算法可能是一个挑战。在实践中,帮助机器开发自己的算法,而不是让人类程序员指定每一个需要的步骤,可能会变得更加有效 。

机器学习Machine Learning代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的机器学习Machine Learning作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此机器学习Machine Learning作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在计算机Quantum computer代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的计算机Quantum computer代写服务。我们的专家在机器学习Machine Learning代写方面经验极为丰富,各种机器学习Machine Learning相关的作业也就用不着 说。

计算机代写|机器学习代写Machine Learning代考|Free Energy

计算机代写|机器学习代写Machine Learning代考|Free Energy

EM can be viewed as optimizing the model parameters $\theta$ together with the distribution $\xi$. The Free Energy for a Hidden Markov Model is:
$$
\begin{aligned}
F(\theta, \xi)= & -\sum_i \gamma_1(i) \ln a_i-\sum_{i, j} \sum_{t=1}^{T-1} \xi_t(i, j) \ln A_{i j}-\sum_i \sum_{t=1}^T \gamma_t(i) \ln p\left(\mathbf{y}t \mid s_t=i\right) \ & +\sum{i, j} \sum_{t=1}^{T-1} \xi_t(i, j) \ln \xi_t(i, j)-\sum_i \sum_{t=2}^{T-2} \gamma_t(i) \ln \gamma_t(i)
\end{aligned}
$$
where $\gamma$ is defined as a function of $\xi$ as:
$$
\gamma_t(i)=\sum_k \xi_t(i, k)=\sum_k \xi_{t-1}(k, i)
$$
Warning! Since we weren’t able to find any formula for the free energy, we derived it from scratch (see below). In our tests, it didn’t precisely match the negative log-likelihood. So there might be a mistake here, although the free energy did decrease as expected.

Derivation. This material is very advanced and not required for the course. It is mainly here because we couldn’t find it elsewhere.

As a short-hand, we define $\mathbf{s}=s_{1: T}$ to be a variable representing an entire state sequence. The likelihood of a data sequence is:
$$
p\left(\mathbf{y}{1: T}\right)=\sum{\mathbf{s}} p\left(\mathbf{y}_{1: T}, \mathbf{s}\right)
$$
where the summation is over all possible state sequences.

计算机代写|机器学习代写Machine Learning代考|Most likely state sequences

Suppose we wanted to computed the most likely states $s_t$ for each time in a sequence. There are two ways that we might do it: we could take the most likely state sequence:
$$
s_{1: T}^=\arg \max {s{1: T}} p\left(s_{1: T} \mid \mathbf{y}{1: T}\right) $$ or we could take the sequence of most-likely states: $$ s_t^=\arg \max {s_t} p\left(s_t \mid \mathbf{y}{1: T}\right) $$ While these sequences may often be similar, they can be different as well. For example, it is possible that the most likely states for two consecutive time-steps do not have a valid transition between them, i.e., if $s_t^=i$ and $s{t+1}^=j$, it is possible (though unlikely) that $A_{i j}=0$. This illustrates that these two ways to create sequences of states answer two different questions: what sequence is jointly most likely? And, for each time-step, what is the most likely state just for that time-step?

Suppose we are given $N$ training vectors $\left{\left(\mathbf{x}_i, y_i\right)\right}$, where $\mathbf{x} \in \mathbb{R}^D, y \in{-1,1}$. We want to learn a classifier
$$
f(\mathbf{x})=\mathbf{w}^T \phi(\mathbf{x})+b
$$
so that the classifier’s output for a new $\mathbf{x}$ is $\operatorname{sign}(f(\mathbf{x}))$.
Suppose that our training data are linearly-separable in the feature space $\phi(\mathbf{x})$, i.e., as illustrated in Figure 32, the two classes of training exemplars are sufficiently well separated in the feature space that one can draw a hyperplane between them (e.g., a line in 2D, or plane in 3D). If they are linearly separable then in almost all cases there will be many possible choices for the linear decision boundary, each one of which will produce no classification errors on the training data. Which one should we choose? If we place the boundary very close to some of the data, there seems to be a greater danger that we will misclassify some data, especially when the training data are alsmot certainy noisy.

This motivates the idea of placing the boundary to maximize the margin, that is, the distance from the hyperplane to the closest data point in either class. This can be thought of having the largest “margin for error” – if you are driving a fast car between a scattered set of obstacles, it’s safest to find a path that stays as far from them as possible.

计算机代写|机器学习代写Machine Learning代考|Free Energy

机器学习代写

计算机代写|机器学习代写MACHINE LEARNING代考|FREE ENERGY

$E M$ 可以看作是优化模型参数 $\theta$ 连同分布 $\xi$. 隐马尔可夫模型的自由能是:
$$
F(\theta, \xi)=-\sum_i \gamma_1(i) \ln a_i-\sum_{i, j} \sum_{t=1}^{T-1} \xi_t(i, j) \ln A_{i j}-\sum_i \sum_{t=1}^T \gamma_t(i) \ln p\left(\mathbf{y} t \mid s_t=i\right) \quad+\sum i, j \sum_{t=1}^{T-1} \xi_t(i, j) \ln \xi_t(i, j)-\sum_i \sum_{t=2}^{T-2} \gamma_t(i) \ln \gamma_t(i)
$$
在哪里
$$
\gamma_t(i)=\sum_k \xi_t(i, k)=\sum_k \xi_{t-1}(k, i)
$$
警告! 由于我们无法找到自由能的任何公式,我们从头开始推导它 seebelow. 在我们的测试中,它并不精确匹配负对数似然。所以这里可能有一个错误,尽管自由 能确实像预期的那样减少了。
推导。该材料非常高级,本课程不需要。它主要在这里,因为我们在别处找不到它。
作为简写,我们定义 $\mathbf{s}=s_{1: T}$ 成为代表整个状态序列的变量。数据序列的可能性是:
$$
p(\mathbf{y} 1: T)=\sum \mathbf{s} p\left(\mathbf{y}_{1: T}, \mathbf{s}\right)
$$
其中求和是针对所有可能的状态序列。

计算机代写|机器学习代写MACHINE LEARNING代考|MOST LIKELY STATE SEQUENCES

假设我们想计算最可能的状态 $s_t$ 对于序列中的每一次。有两种方法可以做到这一点:我们可以采用最有可能的状态序列:
$$
s_{1: T}^{=} \arg \max s 1: T p\left(s_{1: T} \mid \mathbf{y} 1: T\right)
$$
或者我们可以采用最可能状态的序列:
$$
s_t^{=} \arg \max s_t p\left(s_t \mid \mathbf{y} 1: T\right)
$$
虽然伩些序列通常可能相似,但它们也可能不同。例如,两个连续时间步长的最可能状态之间可能没有有效的转换,即,如果 $s_t^{=} i$ 和 $s t+1^{=} j$ , 有可能的thoughunlikely那 $A_{i j}=0$. 这说明这两种创建状态序列的方法回答了两个不同的问题: 什么序列联合起来最有可能? 并且,对于每个时 间步,该时间步最可能的状态是什么?
假设我们得到 $N$ 训练向量 $\backslash$ left $\left{\right.$ left $(\mid$ mathbf[x}_i, y_i||right)|〈ight $}$ ,在哪里 $\mathbf{x} \in \mathbb{R}^D, y \in-1,1$. 我们想学习一个分类器
$$
f(\mathbf{x})=\mathbf{w}^T \phi(\mathbf{x})+b
$$
这样分类器的输出对于一个新的 $\mathbf{x}$ 是 $\operatorname{sign}(f(\mathbf{x}))$.
假设我们的训练数据在特征空间中是线性可分的 $\phi(\mathbf{x})$ ,即,如图 32 所示,两类训练样本在特征空间中充分分离,可以在它们之间绘制一个超平面 e. g., alinein $2 D$, orplanein $3 D$. 如果它们是线性可分的,那么在几乎所有情况下,线性决策边界都会有许多可能的选择,其中每一个都不会在 训练数据上产生分类错误。我们应该选择哪一个? 如果我们将边界放置在非常靠近某些数据的地方,那么我们将对某些数据进行错误分类的危险 似乎更大,尤其是当训练数据总是充满噪音时。
这激发了放置边界以最大化边距的想法,即从超平面到任一类中最近数据点的距离。这可以被认为具有最大的“误差范围”一一如果您在一组分散的 障碍物之间驾驶快车,找到一条尽可能远离它们的路径是最安全的。

计算机代写|机器学习代写Machine Learning代考

计算机代写|机器学习代写Machine Learning代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment