如果你也在 怎样代写复杂网络Complex Network 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。复杂网络Complex Network分析研究如何识别、描述、可视化和分析复杂网络。分析网络最突出的方法是使用Python库NetworkX,它为构造和绘制复杂的神经网络提供了一种突出的方法。
复杂网络Complex NetworkCNA研究和应用爆炸式增长的主要原因有两个因素:一是廉价而强大的计算机的可用性,使在数学、物理和社会科学方面受过高级培训的研究人员和科学家能够进行一流的研究;另一个因素是人类社会、行为、生物、金融和技术方面日益复杂。
复杂网络Complex Network代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的复杂网络Complex Network作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此复杂网络Complex Network作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!
my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
数据科学代写|复杂网络代写Complex Network代考|Symmetry Conditions
The description of the system in terms of cavity fields and biases is equivalent and we have chosen a formulation in terms of biases or messages only. We have already seen from (6.8) that the possible messages are the corners of a hypercube in $q$ dimensions except the corner at $\mathbf{0}$. Therefore, there are in principle $2^q-1$ different possible messages. Since one wants to find solutions of an equipartitioning problem, one is only interested in solutions which are symmetric under an arbitrary permutation of the spin indices, i.e., the solution must be fully color symmetric. An ansatz that bears this symmetry is
$$
\mathcal{Q}(\boldsymbol{u})=\eta_\tau \text { with } \tau=|\boldsymbol{u}|^2 .
$$
This means that one is simply counting the number of ones in a message and this number is represented by the index of the order parameter $\eta_\tau$. All messages with the same number of ones are equally probable. Hence, one only needs to determine $q$ different probabilities $\eta_\tau$, of which $q-1$ are independent due to the normalization constraint:
$$
\sum_{\tau=1}^q\left(\begin{array}{l}
q \
\tau
\end{array}\right) \eta_\tau=1 .
$$
The paramagnetic solution $\eta_q=1$ and $\eta_{\tau \neq q}=0$ is always possible but shall not be taken into consideration as it is unstable.
数据科学代写|复杂网络代写Complex Network代考|Bi-partitioning
Due to the large number of combinations of messages for large $k$ and the large number of different messages for large values of $q$, it was not possible to find a simple analytic expression for the coefficients in the self-consistent calculation of the order parameters $\eta_1 \ldots \eta_q$ for arbitrary $k$ and $q$. The expression is simple though, if only two spin states are allowed. The probability for a cavity field $\boldsymbol{h}=\left(h_1, h_2\right)$ seen by a node of excess degree $d$ is expressed as
$$
P_{\mathrm{cav}}^d\left(h_1, h_2\right)=\frac{d !}{\left(d-h_1\right) !\left(d-h_2\right) !\left(h_1+h_2-d\right) !} \eta_1^{2 d-h_1-h_2}\left(1-2 \eta_1\right)^{h_1+h_2-d} .
$$
The average over the excess degree distribution then reads
$$
P_{\text {cav }}\left(h_1, h_2\right)=\sum_{d=0}^{\infty} q(d) P_{\text {cav }}^d\left(h_1, h_2\right) .
$$
Recall that $\eta_\tau$ is the probability that the maximum component of the cavity field is $\tau$-fold degenerate. One then has
$$
\begin{aligned}
& \eta_1=\sum_{h_1=1}^{\infty} \sum_{h_2=0}^{h_1-1} P_{\text {cav }}\left(\boldsymbol{h}=\left(h_1, h_2\right)\right), \
& \eta_2=1-2 \eta_1=\sum_{h=1}^{\infty} P_{\text {cav }}(\boldsymbol{h}=(h, h)),
\end{aligned}
$$
which can also be understood as a self-consistent equation for the order parameters $\eta_\tau$ and can be solved easily in an iterative manner again. For a partition into only two parts, we only need to determine two order parameters $\eta_1$ and $\eta_2$. The normalization condition (6.19) reduces the problem to determining only a single order parameter as $\eta_2=1-2 \eta_1$. We formulate the problem in terms of $\eta_2$ :
$$
\begin{aligned}
\eta_2 & =\sum_{n_0=0}^{\infty} \sum_{n=0}^{\infty} q\left(n_0+2 n\right) \frac{\left(n_0+2 n\right) !}{n_{0} ! n ! n !}\left(\frac{1-\eta_2}{2}\right)^{2 n} \eta_2^{n_0} \
& =\sum_{d=0}^{\infty} q(d) \sum_{n=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \frac{d !}{(d-2 n) ! n ! n !}\left(\frac{1-\eta_2}{2}\right)^{2 n} \eta_2^{d-2 n} .
\end{aligned}
$$
复杂网络代写
数据科学代写|复杂网络代写Complex Network代考|Symmetry Conditions
根据空腔场和偏置对系统的描述是等效的,我们选择了一个仅根据偏置或信息的公式。我们已经从(6.8)中看到,除了$\mathbf{0}$的角外,可能的消息是$q$维度的超立方体的角。因此,原则上有$2^q-1$不同可能的信息。由于我们想要找到一个等分问题的解,我们只对自旋指标任意排列下对称的解感兴趣,即解必须是完全色对称的。具有这种对称性的一种构象是
$$
\mathcal{Q}(\boldsymbol{u})=\eta_\tau \text { with } \tau=|\boldsymbol{u}|^2 .
$$
这意味着只需计算消息中的1的数量,这个数字由order参数$\eta_\tau$的索引表示。所有具有相同1个数的消息都是等概率的。因此,只需确定$q$不同的概率$\eta_\tau$,其中$q-1$由于归一化约束是独立的:
$$
\sum_{\tau=1}^q\left(\begin{array}{l}
q \
\tau
\end{array}\right) \eta_\tau=1 .
$$
顺磁溶液$\eta_q=1$和$\eta_{\tau \neq q}=0$总是可行的,但不应考虑,因为它不稳定。
数据科学代写|复杂网络代写Complex Network代考|Bi-partitioning
由于对于大的$k$有大量的消息组合,对于大的$q$有大量的不同的消息,对于任意的$k$和$q$的阶参数$\eta_1 \ldots \eta_q$的自一致计算中,不可能找到一个简单的系数解析表达式。如果只允许两个自旋状态,表达式就很简单。多余度节点$d$看到的空腔场$\boldsymbol{h}=\left(h_1, h_2\right)$的概率表示为
$$
P_{\mathrm{cav}}^d\left(h_1, h_2\right)=\frac{d !}{\left(d-h_1\right) !\left(d-h_2\right) !\left(h_1+h_2-d\right) !} \eta_1^{2 d-h_1-h_2}\left(1-2 \eta_1\right)^{h_1+h_2-d} .
$$
超额度分布的平均值为
$$
P_{\text {cav }}\left(h_1, h_2\right)=\sum_{d=0}^{\infty} q(d) P_{\text {cav }}^d\left(h_1, h_2\right) .
$$
回想一下,$\eta_\tau$是腔场的最大分量为$\tau$ -fold简并的概率。然后是
$$
\begin{aligned}
& \eta_1=\sum_{h_1=1}^{\infty} \sum_{h_2=0}^{h_1-1} P_{\text {cav }}\left(\boldsymbol{h}=\left(h_1, h_2\right)\right), \
& \eta_2=1-2 \eta_1=\sum_{h=1}^{\infty} P_{\text {cav }}(\boldsymbol{h}=(h, h)),
\end{aligned}
$$
它也可以理解为阶参数的自洽方程$\eta_\tau$,可以很容易地再次迭代求解。对于只分成两个部分的分区,我们只需要确定两个顺序参数$\eta_1$和$\eta_2$。归一化条件(6.19)将问题简化为仅确定单个顺序参数$\eta_2=1-2 \eta_1$。我们用$\eta_2$来表示这个问题:
$$
\begin{aligned}
\eta_2 & =\sum_{n_0=0}^{\infty} \sum_{n=0}^{\infty} q\left(n_0+2 n\right) \frac{\left(n_0+2 n\right) !}{n_{0} ! n ! n !}\left(\frac{1-\eta_2}{2}\right)^{2 n} \eta_2^{n_0} \
& =\sum_{d=0}^{\infty} q(d) \sum_{n=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \frac{d !}{(d-2 n) ! n ! n !}\left(\frac{1-\eta_2}{2}\right)^{2 n} \eta_2^{d-2 n} .
\end{aligned}
$$
数据科学代写|复杂网络代写Complex Network代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。