9.6 A Simple Procedure for Finding Integrals
Suppose $f$ is a continuous function and $F$ is an increasing integrator function. How do you find $\int_{a}^{b} f(x) d F ?$ Is there some sort of easy way to do it which will handle lots of simple cases? It turns out there is a way. It is based on Lemma $9.3 .22$. First of all
$$
F(x+) \equiv \lim {y \rightarrow x+} F(y), F(x-) \equiv \lim {y \rightarrow x-} F(y)
$$
For an increasing function $F$, the jump of the function at $x$ equals $F(x+)-F(x-)$.
Procedure 9.6.1 Suppose $f$ is continuous on $[a, b]$ and $F$ is an increasing function defined on $[a, b]$ such that there are finitely many intervals determined by the partition $a=x_{0}<x_{1}<\cdots<x_{n}=b$ which have the property that on $\left[x_{i}, x_{i+1}\right]$, the following function is differentiable and has a continuous derivative.
$$
G_{i}(x) \equiv\left{\begin{array}{l}
F(x) \text { on }\left(x_{i}, x_{i+1}\right) \
F\left(x_{i}+\right) \text { when } x=x_{i} \
F\left(x_{i+1}-\right) \text { when } x=x_{i+1}
\end{array}\right.
$$
Also assume $F(a)=F(a+), F(b)=F(b-)$. Then $$ \int_{a}^{b} f(x) d F=\sum_{j=0}^{n-1} \int_{x_{j}}^{x_{j+1}} f(x) G_{j}^{\prime}(x) d x+\sum_{i=1}^{n-1} f\left(x_{i}\right)\left(F\left(x_{i}+\right)-F\left(x_{i}-\right)\right) $$
202
CHAPTER 9. INTEGRATION
Here is why this procedure works. Let $\delta$ be very small and consider the partition
$$
\begin{aligned}
a &=x_{0}<x_{1}-\delta<x_{1}<x_{1}+\delta \
&<x_{2}-\delta<x_{2}<x_{2}+\delta<\
\cdots x_{n-1}-\delta &<x_{n-1}<x_{n-1}+\delta<x_{n}-\delta<x_{n}=b
\end{aligned}
$$
where $\delta$ is also small enough that whenever $|x-y|<\delta$, it follows $|f(x)-f(y)|<\varepsilon$. Then from the properties of the integral presented above,
$$
\begin{gathered}
\int_{a}^{x_{1}-\delta} f d F+\int_{x_{1}+\delta}^{x_{2}-\delta} f d F+\cdots+\int_{x_{n-1}+\delta}^{b} f d F+\sum_{i=1}^{n-1}\left(f\left(x_{i}\right)-\varepsilon\right)\left(F\left(x_{i}+\delta\right)-F\left(x_{i}-\delta\right)\right) \
\leq \int_{a}^{b} f d F \leq \int_{a}^{x_{1}-\delta} f d F+\int_{x_{1}+\delta}^{x_{2}-\delta} f d F+\cdots+\int_{x_{n-1}+\delta}^{b} f d F \
+\sum_{i=1}^{n-1}\left(f\left(x_{i}\right)+\varepsilon\right)\left(F\left(x_{i}+\delta\right)-F\left(x_{i}-\delta\right)\right)
\end{gathered}
$$
By Lemma 9.3.22 this implies
$$
\begin{aligned}
&\int_{a}^{x_{1}-\delta} f G_{0}^{\prime} d x+\int_{x_{1}+\delta}^{x_{2}-\delta} f G_{1}^{\prime} d x+\cdots+\int_{x_{n-1}+\delta}^{b} f G_{n-1}^{\prime} d x \
&+\sum_{i=1}^{n-1}\left(f\left(x_{i}\right)-\varepsilon\right)\left(F\left(x_{i}+\delta\right)-F\left(x_{i}-\delta\right)\right) \leq \int_{a}^{b} f d F \leq
\end{aligned}
$$
微积分note Integer Multiples of Irrational Numbers 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。