物理代写| Geodesics 相对论代考
物理代写
4.3 Geodesics
In curved spaces, the “straight lines” are called geodesics. Of course, geodesics may not look straight when they are embedded in a flat higher dimensional space. For example, great circles are geodesics on a two-sphere. For a tiny ant moving on the sphere, a geodesic is indeed like a straight line. But when the two sphere is embedded in 3 dimensional Euclidean space, they trace out circles, and that is why we write “great circles are geodesics on a two-sphere”.
We now ask the question how would an ant on a general curved surface draw geodesics? Extending our perception of Euclidean geometry, we can think of two ways:
- Parallelly transporting the tangent: The ant takes the first step in a given direction and keeps on moving in the same direction in such a way that the tangent keeps the same direction, that is, the tangent is parallelly transported.
- Shortest Distance: The ant makes large number (tending to infinity) of trips to another point via all possible routes and, calls the route with shortest distance, requiring minimum number of steps, as the geodesic. ${ }^{1}$
When the metric is positive definite as it is for a sphere, the geodesic between two points gives the shortest distance as compared with curves in its neighbourhood. But when the metric is not positive definite as we have in general relativity, the geodesic gives the extremal distance. For example if the two points are timelike separated, the geodesic gives the maximum distance. However, the first of the criterion remains the same even for an indefinite metric.
Let a geodesic be parameterised by a the variable $\lambda$. One can consider the $\lambda$ ‘s to be milestones, which are not unique, in the sense that the locations of the $\lambda=0,1,2, \cdots$ marks depend on the units (km, miles etc.), nevertheless in given units $\lambda$ uniquely specifies a point on the curve. We shall derive the equations for the geodesic curves in terms of the parameter $\lambda$.
4.3.1 Parallelly Transporting the Tangent
The components of the tangent vector $u^{i}$ of a curve $x^{i}(\lambda)$ is,
$$
u^{i}=\mathrm{d} x^{i} / \mathrm{d} \lambda
$$
(since each $x^{i}$ is a function of $\lambda$ only!). Parallelly transporting the tangent gives,
towards another ant at a second point by slowly changing the direction. As soon as the second ant receives it, it reflects it back to the first ant by slowly rotating a mirror. The path of the laser can be traced by putting intermediate observers and called the geodesic. $4.3$ Geodesics $$ u_{; k}^{i} u^{k}=0 . $$
Since this differential is along a curve parameterised by $\lambda$, the above equation can be written as
$$
\frac{\partial}{\partial x^{k}}\left(\frac{\mathrm{d} x^{i}}{\mathrm{~d} \lambda}\right) \frac{\mathrm{d} x^{k}}{\mathrm{~d} \lambda}+\Gamma_{j k}^{i} u^{j} u^{k}=\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} \lambda^{2}}+\Gamma_{j k}^{i} \frac{\mathrm{d} x^{j}}{\mathrm{~d} \lambda} \frac{\mathrm{d} x^{k}}{\mathrm{~d} \lambda}=0
$$
This second order differential equation is called the geodesic equation. The solutions to this differential equation give the geodesics or geodesic curves.
物理代考
4.3 测地线
在弯曲空间中,“直线”称为测地线。当然,当测地线嵌入到平坦的高维空间中时,它们可能看起来并不直。例如,大圆是两个球体上的测地线。对于在球体上移动的小蚂蚁来说,测地线确实就像一条直线。但是当两个球体嵌入到 3 维欧几里得空间中时,它们会画出圆,这就是为什么我们写“大圆是两个球体上的测地线”。
我们现在问一个问题,一般曲面上的蚂蚁如何绘制测地线?扩展我们对欧几里得几何的理解,我们可以想到两种方法:
1.平行输送切线:蚂蚁在给定方向上迈出第一步,并继续沿同一方向移动,使切线保持同一方向,即平行输送切线。
- 最短距离:蚂蚁通过所有可能的路线多次(趋于无穷大)到达另一点,并将最短距离、需要最少步数的路线称为测地线。 ${ }^{1}$
当度量是正定的,因为它对于球体来说是正定的,两点之间的测地线与其邻域中的曲线相比给出了最短的距离。但是当度量不是我们在广义相对论中的正定时,测地线给出了极值距离。例如,如果两个点是时间间隔的,则测地线给出最大距离。然而,即使对于不确定的度量,第一个标准也保持不变。
让测地线由变量 $\lambda$ 参数化。可以将 $\lambda$ 视为里程碑,这不是唯一的,因为 $\lambda=0,1,2, \cdots$ 标记的位置取决于单位(公里,英里等.),但是在给定的单位中,$\lambda$ 唯一地指定了曲线上的一个点。我们将根据参数 $\lambda$ 推导出测地线曲线的方程。
4.3.1 平行传输切线
曲线 $x^{i}(\lambda)$ 的切向量 $u^{i}$ 的分量是,
$$
u^{i}=\mathrm{d} x^{i} / \mathrm{d} \lambda
$$
(因为每个 $x^{i}$ 只是 $\lambda$ 的函数!)。平行传输切线给出,
通过缓慢改变方向,在第二个点向另一只蚂蚁移动。一旦第二只蚂蚁收到它,它就会通过缓慢旋转镜子将其反射回第一只蚂蚁。激光的路径可以通过放置中间观察者来追踪,称为测地线。 $4.3$ 测地线 $$ u_{; k}^{i} u^{k}=0 。 $$
由于这个微分是沿着一条由 $\lambda$ 参数化的曲线,所以上面的方程可以写成
$$
\frac{\partial}{\partial x^{k}}\left(\frac{\mathrm{d} x^{i}}{\mathrm{~d} \lambda}\right) \frac{\mathrm {d} x^{k}}{\mathrm{~d} \lambda}+\Gamma_{jk}^{i} u^{j} u^{k}=\frac{\mathrm{d}^{ 2} x^{i}}{\mathrm{~d} \lambda^{2}}+\Gamma_{jk}^{i} \frac{\mathrm{d} x^{j}}{\mathrm{ ~d} \lambda} \frac{\mathrm{d} x^{k}}{\mathrm{~d} \lambda}=0
$$
这个二阶微分方程称为测地线方程。该微分方程的解给出测地线或测地线曲线。
物理代考Gravity and Curvature of Space-Time 代写 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
电磁学代考
物理代考服务:
物理Physics考试代考、留学生物理online exam代考、电磁学代考、热力学代考、相对论代考、电动力学代考、电磁学代考、分析力学代考、澳洲物理代考、北美物理考试代考、美国留学生物理final exam代考、加拿大物理midterm代考、澳洲物理online exam代考、英国物理online quiz代考等。
光学代考
光学(Optics),是物理学的分支,主要是研究光的现象、性质与应用,包括光与物质之间的相互作用、光学仪器的制作。光学通常研究红外线、紫外线及可见光的物理行为。因为光是电磁波,其它形式的电磁辐射,例如X射线、微波、电磁辐射及无线电波等等也具有类似光的特性。
大多数常见的光学现象都可以用经典电动力学理论来说明。但是,通常这全套理论很难实际应用,必需先假定简单模型。几何光学的模型最为容易使用。
相对论代考
上至高压线,下至发电机,只要用到电的地方就有相对论效应存在!相对论是关于时空和引力的理论,主要由爱因斯坦创立,相对论的提出给物理学带来了革命性的变化,被誉为现代物理性最伟大的基础理论。
流体力学代考
流体力学是力学的一个分支。 主要研究在各种力的作用下流体本身的状态,以及流体和固体壁面、流体和流体之间、流体与其他运动形态之间的相互作用的力学分支。
随机过程代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。 例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程