Scroll Top
19th Ave New York, NY 95822, USA

数学代写|最优化作业代写optimization代考|Analytic Computational Complexity

如果你也在 怎样代写最优化optimization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。最优化optimization或数学编程是指从一组可用的备选方案中选择一个最佳元素。从计算机科学和工程到运筹学和经济学的所有定量学科中都会出现各种优化问题,几个世纪以来,数学界一直在关注解决方法的发展。

最优化optimazation在最简单的情况下,包括通过系统地从一个允许的集合中选择输入值并计算出函数的值来最大化或最小化一个实际函数。将优化理论和技术推广到其他形式,构成了应用数学的一个大领域。更一般地说,优化包括在给定的域(或输入)中寻找一些目标函数的 “最佳可用 “值,包括各种不同类型的目标函数和不同类型的域。非凸全局优化的一般问题是NP-完备的,可接受的深层局部最小值是用遗传算法(GA)、粒子群优化(PSO)和模拟退火(SA)等启发式方法找到的。

my-assignmentexpert™ 最优化optimization作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的最优化optimazation作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此最优化optimazation作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在最优化optimization代写方面经验极为丰富,各种最优化optimazation相关的作业也就用不着 说。

我们提供的最优化optimization及其相关学科的代写,服务范围广, 其中包括但不限于:

数学代写|最优化作业代写optimization代考|Analytic Computational Complexity

数学代写|最优化作业代写optimization代考|Accuracy and Complexity of Computations

The theory of analytic complexity is closely related to the theory of errors in the approximate solving problem. The value of the processing time is often determined by the requirements to the accuracy of the approximate solution; the relation of the components of the global error; the dependence of the error on the type, structure, volume of input data and their accuracy, bit grid of computer, and rounding rules; the type of error estimates; and the method of estimates constructing from below and from above. Therefore, there is a good reason to consider advisably these two characteristics: the error of the approximate solution and the process time [297, 301].
Considering that it is difficult to build high lower and lower upper estimates in the given model of computation (when $E$ is a global error), some idealized models are considered that to consider only individual components of the global error (more often the errors of the method) and the influence of the individual components of computational models on error and complexity. For such incomplete models, it is possible to conclude the impossibility of constructing $\varepsilon$-solution based on this information.

The dependence of the approximate solution accuracy and the complexity of the $\varepsilon$-solution computation from the various components of the computational model will be considered next.

数学代写|最优化作业代写optimization代考|Input Information, Algorithms, and Complexity of Computations

Consider the idealized computation model: Information $I_{n}(f)$ is given accurately, and the model $c$ is fixed. Here are some characteristics that are related to the lower and upper estimates of the error on the example of the passive pure minimax strategy $[102,253]$ (see Chap. 1 for more details):

  • $\rho_{\mu}(F, a)=\sup {f \in F} \rho\left(E{\mu}\left(I_{n}(f)\right), a\right)$ is an error of algorithm $a \in A$ on the class of the problems $F$ using information $I_{n}(f)$ (global error [270]).
  • $\rho_{\mu}(F, A)=\inf {a \in A} \rho{\mu}(F, a)$ is a lower boundary of error of algorithms of class $A$ in the class of problems $F$ using information $I_{n}(f)$ (radius of information [270])
    If there is an algorithm $a_{0} \in A$ for which $\rho_{\mu}\left(F, a_{0}\right)=\rho_{\mu}(F, A)$, then it is called accuracy optimal in class $F$ using information $I_{n}(f)$.

The narrowing of the $F$ class that is provided by the incompleteness of information (in relation to $f \in F) F_{n}(f)=\left{\varphi: I_{n}(\varphi)=I_{n}(f), \varphi, f \in F\right}$ allows to introduce the characteristics that are equivalent to the mentioned one above: $\rho_{\mu}\left(F_{n}(f), a\right)$ and $\rho_{\mu}\left(F_{n}(f), A\right)$, which are also called the local error and the local radius of information [270], respectively.

Let $U(f)$ be the multitude of solving problems from $F_{n}(f)$, and $\gamma(f)$ is the center of this multitude (the Chebyshev center). The algorithm $a^{\gamma} \in A$ is called a central one if $a^{\gamma}\left(I_{n}(f)\right)=\gamma(f)$. These algorithms are accuracy optimal. Their important quality is that they minimize the local error of the algorithm:
$$
\inf {a \in A} \sup {\varphi \in F_{n}(f)} \rho_{\mu}\left(I_{n}(f), a\right)=\rho_{\mu}\left(I_{n}(f), a^{\gamma}\right)=\operatorname{rad} U(f) .
$$

数学代写|最优化作业代写OPTIMIZATION代考|Computer Architecture and the Complexity of Computation

There is an opinion (see, for example, [218]) that the optimization of the mathematical support of applied problems and the progress of computing techniques make equal contributions to the increasing possibilities of complex solving problems, in a point of fact in decreasing the computational complexity.

Consider the effect of rounding of the numbers on the computational complexity. Hypothesis [22] on that it is enough to compute the estimate of function $f$ for obtaining the solution with accuracy $O(\varepsilon)$ and perform intermediate computations in implemented CA with $O\left(\ln \varepsilon^{-1}\right)$ binary digit bits found confirmation in solving many problems $[42,106,114]$.

Thus, in the building of the $\varepsilon$-solution, the program uses numeric arrays with a total volume of $N$ numbers, and then memory $O\left(N \ln \varepsilon^{-1}\right)$ is required to store them.
Next, there is a possibility to consider the example of separate classes of problems and how the rounding error affects the possibility of $\varepsilon$-solution computation and the complexity of CP.
Let
$$
\begin{gathered}
\rho\left(E_{\mathrm{H}}\left(I_{n}(f), a, c\right) \leq \varepsilon_{1}<\varepsilon,\right. \ \rho\left(E_{\mu \tau}\left(I_{n}(f), a, c\right)>\varepsilon_{2}, \quad \varepsilon_{2}=\varepsilon-\varepsilon_{1},\right.
\end{gathered}
$$
where $E_{\mu \tau}=E_{\mu}+E_{\tau}, a \in A$, and the relations are performed (in a point of fact in the numerical integration of ODE, the computation of integrals and other classes of problems) $[106,114]$;
$$
E_{\mu}=O\left(n^{-p}\right), \quad E_{\tau}=O\left(n 2^{-\tau}\right)
$$
where $p$ is the order of the numerical method accuracy, and $\tau$ is the length of the mantissa in binary number notation in the floating-point mode. Herewith,
$$
\varepsilon_{\mu \tau}^{0}(\tau)=\min {n} \rho\left(E{\mu \tau}\left(I_{n}(f), a, c\right)=O\left(n_{0}^{-p}(\tau)\right)\right.
$$
where $n_{0}(\tau)=O\left(2^{\tau /(p+1)}\right)$, and $E_{\mu}\left(n_{0}(\tau)\right)=O\left(n_{0}^{-p}(\tau)\right), E_{\tau}\left(n_{0}(\tau)\right)=O\left(n_{0}^{-p}(\tau)\right)$.

数学代写|最优化作业代写optimization代考|Analytic Computational Complexity

最优化作业代写

数学代写|最优化作业代写optimization代考

数学代写|最优化作业代写optimization代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

电磁学代考

物理代考服务:
物理Physics考试代考、留学生物理online exam代考、电磁学代考、热力学代考、相对论代考、电动力学代考、电磁学代考、分析力学代考、澳洲物理代考、北美物理考试代考、美国留学生物理final exam代考、加拿大物理midterm代考、澳洲物理online exam代考、英国物理online quiz代考等。

光学代考

光学(Optics),是物理学的分支,主要是研究光的现象、性质与应用,包括光与物质之间的相互作用、光学仪器的制作。光学通常研究红外线、紫外线及可见光的物理行为。因为光是电磁波,其它形式的电磁辐射,例如X射线、微波、电磁辐射及无线电波等等也具有类似光的特性。

大多数常见的光学现象都可以用经典电动力学理论来说明。但是,通常这全套理论很难实际应用,必需先假定简单模型。几何光学的模型最为容易使用。

相对论代考

上至高压线,下至发电机,只要用到电的地方就有相对论效应存在!相对论是关于时空和引力的理论,主要由爱因斯坦创立,相对论的提出给物理学带来了革命性的变化,被誉为现代物理性最伟大的基础理论。

流体力学代考

流体力学力学的一个分支。 主要研究在各种力的作用下流体本身的状态,以及流体和固体壁面、流体流体之间、流体与其他运动形态之间的相互作用的力学分支。

随机过程代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。 例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment