如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra现代代数,也叫抽象代数,是数学的一个分支,涉及各种集合(如实数、复数、矩阵和矢量空间)的一般代数结构,而不是操作其个别元素的规则和程序。除了数论和代数几何的发展,现代代数通过群论对对称性有重要的应用。群这个词通常指的是一组运算,可能保留了某些物体的对称性或类似物体的排列。
现代代数Modern Algebra代数是数学的一个分支的名称,但它也是一种数学结构的名称。代数或代数结构是一个带有运算的非空集合。从一般结构角度研究代数的数学分支被称为普遍代数。相比之下,现代代数处理的是特殊类别的代数,包括群、环、场、向量空间和模块。从普遍代数的角度来看,场、向量空间和模块不被视为代数结构。现代代数也被称为抽象代数,但这两个名字在今天都有误导性,因为它在现代数学中已经不怎么现代或抽象了。
现代代数Modern Algebra代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的现代代数Modern Algebra作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此现代代数Modern Algebra作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!
my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在现代代数Modern Algebra代写方面经验极为丰富,各种现代代数Modern Algebra相关的作业也就用不着说。
数学代写|现代代数代考Modern Algebra代写|ISOMORPHISM
We speak of the set of integers, but if we were to allow ourselves to be distracted by things that are mathematically irrelevant, we might think that there were many such sets. The integers can appear in Arabic notation ${\ldots, 1,2,3, \ldots}$, in Roman notation ${\ldots$, I, II, III, … $}$, in German ${\ldots$, ein, zwei, drei, … , and so on; but mathematically we want to think of all these sets as being the same. The idea that filters out such differences as names and notation, as well as other differences that are irrelevant for group-theoretic purposes, is isomorphism. Isomorphism allows us to treat certain groups as being alike just as geometrical congruence allows us to treat certain triangles as being alike. The idea also applies in many cases that are less obvious than that of the integers presented in different languages or notations. As a hint of this, consider the subgroup $\left{\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$ of $S_3$ (Table 18.1) and the group $\mathbb{Z}_3$ (Table 18.2). The elements of $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$ are permutations and the operation is composition; the elements of $\mathbb{Z}_3$ are congruence classes and the operation is addition modulo 3. Thus the underlying sets and operations arise in totally different ways. Still, these groups are obviously we could fill in all of one table just by knowing the other. The following definition isolates the idea behind this example.
Definition. Let $G$ be a group with operation $*$, and let $H$ be a group with operation #. An isomorphism of $G$ onto $H$ is a mapping $\theta: G \rightarrow H$ that is one-to-one and onto and satisfies
$$
\theta(a * b)=\theta(a) # \theta(b)
$$
for all $a, b \in G$. If there is an isomorphism of $G$ onto $H$, then $G$ and $H$ are said to be isomorphic and we write $G \approx H$.
数学代写|现代代数代考Modern Algebra代写|MORE ON ISOMORPHISM
If two finite groups are isomorphic, then they must have the same order because an isomorphism is, among other things, one-to-one and onto. Turning this around (that is, using the contrapositive), we get the simplest of all tests for showing that two groups are not isomorphic: If $G$ and $H$ are groups and $|G| \neq|H|$ then $G$ and $H$ are not isomorphic. It is useful to have a list of other properties that are shared by isomorphic groups. Such a list will frequently make it much easier to determine quickly if two groups are not isomorphic.
Theorem 19.1. Assume that $G$ and $H$ are groups and that $G \approx H$.
(a) $|G|=|H|$.
(b) If $G$ is Abelian, then $H$ is Abelian.
(c) If $G$ is cyclic, then $H$ is cyclic.
(d) If $G$ has a subgroup of order $n$ (for some positive integer $n$ ), then $H$ has a subgroup of order $n$.
(e) If $G$ has an element of order $n$, then $H$ has an element of order $n$.
(f) If every element of $G$ is its own inverse, then every element of $H$ is its own inverse.
(g) If every element of $G$ has finite order; then every element of $H$ has finite order.
PROOF. Statement (a) is the observation made at the beginning of this section. Statement (b) was proved as Theorem 18.1. The proofs of the remaining statements are left to the problems at the end of this section.
现代代数代写
数学代写|现代代数代考Modern Algebra代写|ISOMORPHISM
我们说的是整数集合,但如果我们允许自己被数学上无关的东西分散注意力,我们可能会认为有很多这样的集合。整数可以用阿拉伯语表示${\ldots, 1,2,3, \ldots}$,用罗马语表示${\ldots$, I, II, III,…$}$,用德语表示${\ldots$, ein, zwei, drei,…等等;但是数学上我们想把所有这些集合都看成是一样的。过滤掉诸如名称和符号等差异,以及与群论目的无关的其他差异的思想是同构。同构允许我们把某些群体看作是相似的就像几何同余允许我们把某些三角形看作是相似的一样。这个想法也适用于许多不那么明显的情况,而不是用不同的语言或符号表示整数。作为提示,请考虑$S_3$的子组$\left{\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$(表18.1)和组$\mathbb{Z}_3$(表18.2)。$\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$的元素是排列,操作是组合;$\mathbb{Z}_3$的元素是同余类,运算是对3取模的加法。因此,底层的集合和操作以完全不同的方式出现。当然,这些基团很明显我们可以填满一张表只要知道另一张表。下面的定义隔离了这个示例背后的思想。
定义。设$G$为操作为$*$的组,设$H$为操作为#的组。$G$到$H$的同构是一个映射$\theta: G \rightarrow H$,它是一对一的,并且满足
$$
\theta(a * b)=\theta(a) # \theta(b)
$$
对于所有$a, b \in G$。如果$G$和$H$是同构的,那么$G$和$H$就是同构的,我们写$G \approx H$。
数学代写|现代代数代考Modern Algebra代写|MORE ON ISOMORPHISM
如果两个有限群是同构的,那么它们一定有相同的序,因为同构是一一和映上的。反过来说(即使用对负命题),我们得到了所有证明两个群不同构的检验中最简单的:如果 $G$ 和 $H$ 是组和 $|G| \neq|H|$ 然后 $G$ 和 $H$ 不是同构的。拥有同构组共享的其他属性列表是很有用的。这样的列表通常可以更容易地快速确定两个组是否同构。
定理19.1。假设 $G$ 和 $H$ 是一组 $G \approx H$.
(a) $|G|=|H|$.
(b)如果 $G$ 那么,阿贝尔是谁呢 $H$
(c)如果 $G$ 是循环的 $H$
(d)如果 $G$ 有次序的子群吗 $n$ (对于某个正整数 $n$ ),那么 $H$ 有次序的子群吗 $n$.
(e)如果 $G$ 有秩序的元素吗 $n$那么, $H$ 有秩序的元素吗 $n$.
(f)如果 $G$ 是它自身的逆,那么每一个元素 $H$
(g)如果 $G$ 有有限阶;的每一个元素 $H$ 有有限阶。
证明。陈述(a)是在本节开头所作的评论。表述(b)被证明为定理18.1。其余语句的证明留到本节末尾的问题中。
数学代写|现代代数代考Modern Algebra代写 请认准exambang™. exambang™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
Matlab代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。