Scroll Top
19th Ave New York, NY 95822, USA

数学代写|微积分代写Calculus代考|Taylor Series

如果你也在 怎样代写微积分Calculus 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。微积分Calculus 最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

微积分Calculus 它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互关联,它们利用了无限序列和无限数列收敛到一个明确定义的极限的基本概念 。17世纪末,牛顿(Isaac Newton)和莱布尼兹(Gottfried Wilhelm Leibniz)独立开发了无限小数微积分。后来的工作,包括对极限概念的编纂,将这些发展置于更坚实的概念基础上。今天,微积分在科学、工程和社会科学中得到了广泛的应用。

微积分Calculus 代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的微积分Calculus 作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此微积分Calculus 作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在微积分Calculus Assignment代写方面经验极为丰富,各种微积分Calculus Assignment相关的作业也就用不着 说。

数学代写|微积分代写Calculus代考|Taylor Series

数学代写|微积分代写Calculus代考|Taylor Series

Taylor’s theorem states that if a function $f(x)$ is finite at $x=0$, and has finite derivatives of every order in an interval about $x=0$, then the function can be written as an infinite polynomial, a power series of the form
$$
f(x)=a_0+a_1 x+a_2 x^2+\cdots+a_n x^n+\cdots
$$
The degree of a term in the polynomial is the power that $x$ is raised to. In a Taylor series, the constant coefficients $a_n$ are given by the product of $(1 / n !)$ with the $n$th derivative evaluated at $x=0$
$$
a_n=\frac{f^{(n)}(0)}{n !},
$$
where the $n$th derivative is written as $f^{(n)}=\frac{d^n f}{d x^n}$. In expressions such as $f^{(n)}(0)$, the function is first differentiated $n$ times and the result is then evaluated at the argument-here 0 .

Recall that the factorial function $n !=(n)(n-1)(n-2) \cdots(1)$, and $0 !=(1)$ was introduced in frame 249. The series is often written more compactly using the summation notation introduced in frame 339.
$$
f(x)=\sum_{n=0}^{n=\infty} a_n x^n=\sum_{n=0}^{n=\infty} \frac{f^{(n)}(0)}{n !} x^n
$$

数学代写|微积分代写Calculus代考|Numerical Integration

Recall from frame 340 that the area under a curve is given by definite integral, which is the limit of a sum
$$
\int_a^b f(x) d x=\lim {\Delta x \rightarrow 0} \sum{i=1}^N f\left(x_i\right) \Delta x,
$$
where $\Delta x=(b-a) / N$. As $N$ increases and $\Delta x \rightarrow 0$, the area under the rectangles approaches the area under the curve. The problem is that the expression $\Delta x \rightarrow 0$ is a mathematical concept. We live in a world where the mathematical concept is unachievable. The result is that instead of equalities one has approximations. The challenge is to reduce the uncertainties and estimate the errors.

For a finite value of $N$, the area under the rectangle is not identical to the integral (unless $f(x)=$ constant), but it can be close. This is the basic idea of numerical integration, which follows the procedure we used to calculate the area under a curve:

  1. Divide the interval $b-a$ into some convenient number $N$ of equal intervals, $\Delta x=(b-a) / N$.
  2. Evaluate $f_i=f\left(x_i\right)$ at each interval, where $i=1,2, \ldots N$.
  3. Multiply each $f_i$ by $\Delta x$.
  4. Add the results.

The final result is in an approximation to the integral. How good the approximation is depends on the choice of $N$ and the precise method by which the sum is evaluated. The usual way to check the accuracy is simply to repeat the calculation taking smaller steps.

In carrying out the above steps, it may have already occurred to you that a great deal of multiplication is avoided if one first adds all the $f_i^{\prime} s$ and then multiplies the final result by $\Delta x$. Thus,
$$
S=\sum_{i=1}^N\left(f_i \Delta x\right)=\Delta x \sum_{i=1}^N f_i
$$

数学代写|微积分代写Calculus代考|Taylor Series

微积分代写

数学代写|微积分代写CALCULUS代考|TAYLOR SERIES

泰勒定理指出,如果一个函数 $f(x)$ 是有限的 $x=0$ ,并且在一个区间内具有每个顺序的有限导数 $x=0$, 那么这个函数可以写成一个 无穷多项式,一个幂级数的形式
$$
f(x)=a_0+a_1 x+a_2 x^2+\cdots+a_n x^n+\cdots
$$
多项式中某项的次数是次幂 $x$ 被提高到。在泰勒级数中,常数系数 $a_n$ 由以下产品给出 $(1 / n !)$ 与 $n$ th导数评估于 $x=0$
$$
a_n=\frac{f^{(n)}(0)}{n !}
$$
在哪里 $n$ th导数写为 $f^{(n)}=\frac{d^n f}{d x^n}$. 在诸如 $f^{(n)}(0)$ ,函数先微分 $n$ 次,然后在此处的参数 0 处评估结果。
回想一下阶乘函数 $n !=(n)(n-1)(n-2) \cdots(1)$ ,和 $0 !=(1)$ 在第 249 帧中引入。通常使用第 339 帧中引入的求和符号来更紧凑 地编写该系列。
$$
f(x)=\sum_{n=0}^{n=\infty} a_n x^n=\sum_{n=0}^{n=\infty} \frac{f^{(n)}(0)}{n !} x^n
$$

数学代写|微积分代写CALCULUS代考|NUMERICAL INTEGRATION

回想一下第 340 帧,曲线下的面积由定积分给出,它是和的极限
$$
\int_a^b f(x) d x=\lim \Delta x \rightarrow 0 \sum i=1^N f\left(x_i\right) \Delta x
$$
在哪里 $\Delta x=(b-a) / N$. 作为 $N$ 增加和 $\Delta x \rightarrow 0$ ,矩形下方的面积接近曲线下方的面积。问题是表达式 $\Delta x \rightarrow 0$ 是一个数学概念。 我们生活在一个数学概念无法实现的世界。结果是得到近似值而不是等式。挑战在于减少不确定性和估计误差。
对于有限值 $N$, 矩形下的面积不等于积分 unless $\$ f(x=\$$ 常量),但它可以接近。这是数值积分的基本思想,它遵循我们用来计算曲 线下面积的程序:

  1. 划分区间 $b-a$ 变成一些方便的号码 $N$ 等间隔, $\Delta x=(b-a) / N$.
  2. 评价 $f_i=f\left(x_i\right)$ 在每个时间间隔,其中 $i=1,2, \ldots N$.
  3. 每个相乘 $f_i$ 经过 $\Delta x$.
  4. 添加结果。
    最终结果是积分的近似值。近似的好坏取决于选择 $N$ 以及计算总和的精确方法。检查准确性的通常方法是简单地以较小的步骤重复 计算。
    在执行上述步骤时,您可能已经想到,如果首先将所有的 $f_i^{\prime} s$ 然后将最终结果乘以 $\Delta x$. 因此,
    $$
    S=\sum_{i=1}^N\left(f_i \Delta x\right)=\Delta x \sum_{i=1}^N f_i
    $$
数学代写|微积分代写Calculus代考

数学代写|微积分代写Calculus代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment