Scroll Top
19th Ave New York, NY 95822, USA

数学代写|优化理论代写Optimization Theory代考|CAAM560

如果你也在 怎样代写优化理论Optimization Theory 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。优化理论Optimization Theory是致力于解决优化问题的数学分支。 优化问题是我们想要最小化或最大化函数值的数学函数。 这些类型的问题在计算机科学和应用数学中大量存在。

优化理论Optimization Theory每个优化问题都包含三个组成部分:目标函数、决策变量和约束。 当人们谈论制定优化问题时,它意味着将“现实世界”问题转化为包含这三个组成部分的数学方程和变量。目标函数,通常表示为 f 或 z,反映要最大化或最小化的单个量。交通领域的例子包括“最小化拥堵”、“最大化安全”、“最大化可达性”、“最小化成本”、“最大化路面质量”、“最小化排放”、“最大化收入”等等。

优化理论Optimization Theory代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的优化理论Optimization Theory作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此优化理论Optimization Theory作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在优化理论Optimization Theory代写方面经验极为丰富,各种优化理论Optimization Theory相关的作业也就用不着说。

数学代写|优化理论代写Optimization Theory代考|CAAM560

数学代写|优化理论代写Optimization Theory代考|Totally unimodular matrices

Of major importance in relation with subclasses of integer linear programming instances that allow efficient algorithms is the notion of total unimodularity.

Definition 17.1.1 A matrix $A \in \mathbb{Z}^{m \times n}, m, n \in \mathbb{Z}$ is totally unimodular iff for each square submatrix $B$ of $A$ we have $\operatorname{det}(B) \in{-1,0,1}$.

Example 17.1.2 An important class of totally unimodular matrices are incidence matrices of directed graphs. Given a directed graph $G=(V, E), V:=$ $\left{v_1, \ldots, v_m\right}, E:=\left{e_1, \ldots, e_n\right}$, we define its incidence matrix $A=\left[a_{i j}\right]$ by
$$
a_{i j}:=\left{\begin{aligned}
-1 & \text { if edge } e_j \text { starts in } v_i \
1 & \text { if edge } e_j \text { ends in } v_i \
0 & \text { if } v_i \text { is not incident with } e_j
\end{aligned}\right.
$$
By induction on the dimension $k$ of a square submatrix $B$ of $A$ we can show that $A$ is totally unimodular: For $k=1$ it is clear that $\operatorname{det}(B) \in{-1,0,1}$ because all entries of $A$ belong to ${-1,0,1}$. Now for general $k$ note that each column in $B$ has either no, one or two non-zero entries which either are -1 or 1 . If a column in $B$ consists of 0 entries only the determinant is 0 . If a column has precisely one non-zero entry in ${-1,1}$, then Laplace’s expansion rule applied to that column together with the induction hypothesis gives $\operatorname{det}(B)=( \pm 1) \cdot \operatorname{det}(\tilde{B})$ for a submatrix $\tilde{B}$ with $\operatorname{det}(\tilde{B}) \in{-1,0,1}$. Finally, if all columns of $B$ have two non-zero entries, then the structure of $A$ guarantees one to equal 1 and the other to equal -1 . Adding all rows gives the result 0 , thereby showing that the rows are linearly dependent. Thus, $\operatorname{det}(B)=0$.

数学代写|优化理论代写Optimization Theory代考|Unimodularity and integer linear programming

Let us now turn to the role totally unimodular matrices play in connection with optimization problems. Recall the Vertex Theorem 6.1.5 from Chapter 6. If a linear programming problem attains its infimum it attains it in some vertex of the feasible set. In general, such a vertex of course is not integral. However, if it were, then it would be as well a solution of the related integer linear programming problem. Therefore, if we could guarantee optimal vertices (or all vertices) to be integral we could use general LP methods as well for integer linear programming. As we shall see next totally unimodular matrices provide such a guarantee.

Let $A \in \mathbb{Z}^{m \times n}$ with row vectors $a_1, \ldots, a_m, b=\left(b_1, \ldots, b_m\right)^T \in \mathbb{Z}^m, M:=$ $\left{x \in \mathbb{R}^n \mid A \cdot x \leq b\right}, \bar{x} \in M$. Recall from Chapters 2 and 6 the definitions $J_0(\bar{x}):=\left{j \mid a_j^T \cdot \bar{x}=b_j\right}$ of active indices in $\bar{x}$ and $\Sigma(\bar{x})=\left{x \in M \mid J_0(x)=\right.$ $J_0(\bar{x})$ of the stratum generated by $\bar{x}$.

Definition 17.2.1 For $A, b, M, \bar{x}$ as above $\Sigma(\bar{x})$ is a minimal stratum if its dimension equals $\operatorname{rank}(A)$.

It is easy to see that if $\Sigma(\bar{a})$ is minimal the rows $\left{a_j \mid j \in J_0(\bar{x})\right}$ span the row-space of $A$. This will be useful in the following

Theorem 17.2.2 Let $A \in \mathbb{Z}^{m \times n}$ be totally unimodular. Then for every $b \in \mathbb{Z}^m$ and for every minimal stratum $\Sigma(x)$ of $M:={x \in \mathbb{R} \mid A \cdot x \leq b}$ there exists an integral point in $M$, i.e. $M \cap \mathbb{Z}^m \neq \emptyset$.

Proof. Let $\bar{x} \in M$ be such that $\Sigma(\bar{x})$ is a minimal stratum. W.1.o.g. assume that the first $r$ many rows $a_1, \ldots, a_r$ are linearly independent and ${1, \ldots, r} \subseteq J_0(\bar{x})$, where $r:=\operatorname{rank}(A)$ (otherwise reorder $A^{\prime} s$ rows). It follows that the $r \times r$ submatrix $A^{\prime}$ of $A$, given by $A^{\prime}=\left[a_{i j}\right]_{1 \leq i, j \leq r}$ is regular. Therefore, the linear system
$$
A^{\prime} \cdot y=\left(\begin{array}{c}
b_1 \
\vdots \
b_r
\end{array}\right)
$$
has a unique solution $y^{\prime} \in \mathbb{R}^r$, which actually belongs to $\mathbb{Z}^r$. This follows from integrality of the $b_i$ ‘s, total unimodularity of $A$ (which gives $\operatorname{det}\left(A^{\prime}\right) \in$ ${-1,1})$ and Cramer’s rule.

数学代写|优化理论代写Optimization Theory代考|CAAM560

优化理论代写

数学代写|优化理论代写Optimization Theory代考|Totally unimodular matrices

对于允许有效算法的整数线性规划实例的子类来说,最重要的是全单模性的概念。

定义17.1.1矩阵$A \in \mathbb{Z}^{m \times n}, m, n \in \mathbb{Z}$是完全单模的,对于$A$的每个平方子矩阵$B$我们有$\operatorname{det}(B) \in{-1,0,1}$。

例17.1.2有向图的关联矩阵是一类重要的全非模矩阵。给定一个有向图$G=(V, E), V:=$$\left{v_1, \ldots, v_m\right}, E:=\left{e_1, \ldots, e_n\right}$,我们通过定义它的关联矩阵$A=\left[a_{i j}\right]$
$$
a_{i j}:=\left{\begin{aligned}
-1 & \text { if edge } e_j \text { starts in } v_i \
1 & \text { if edge } e_j \text { ends in } v_i \
0 & \text { if } v_i \text { is not incident with } e_j
\end{aligned}\right.
$$
通过对$A$的方阵$B$的维数$k$的归纳法,我们可以证明$A$是完全单模的:对于$k=1$,很明显$\operatorname{det}(B) \in{-1,0,1}$,因为$A$的所有条目都属于${-1,0,1}$。现在对于一般$k$,请注意$B$中的每一列要么没有,要么有一个或两个非零项,它们要么是-1,要么是1。如果$B$中的一列包含0个元素,则行列式为0。如果一列在${-1,1}$中恰好有一个非零项,那么拉普拉斯展开规则应用于该列,并结合归纳假设,得到$\operatorname{det}(B)=( \pm 1) \cdot \operatorname{det}(\tilde{B})$对于含有$\operatorname{det}(\tilde{B}) \in{-1,0,1}$的子矩阵$\tilde{B}$。最后,如果$B$的所有列都有两个非零项,那么$A$的结构保证一个等于1,另一个等于-1。将所有行相加得到结果0,从而表明行是线性相关的。因此,$\operatorname{det}(B)=0$。

数学代写|优化理论代写Optimization Theory代考|Unimodularity and integer linear programming

现在让我们转向完全非模矩阵在最优化问题中所起的作用。回想一下第六章的顶点定理6.1.5。如果一个线性规划问题得到了它的极小值,它就在可行集的某个顶点上得到了它的极小值。一般来说,这样的顶点当然不是积分的。然而,如果它是,那么它也是一个相关的整数线性规划问题的解。因此,如果我们能保证最优顶点(或所有顶点)是整数,我们就可以使用一般的LP方法来进行整数线性规划。我们接下来将看到,完全非模矩阵提供了这样的保证。

设$A \in \mathbb{Z}^{m \times n}$和行向量$a_1, \ldots, a_m, b=\left(b_1, \ldots, b_m\right)^T \in \mathbb{Z}^m, M:=$$\left{x \in \mathbb{R}^n \mid A \cdot x \leq b\right}, \bar{x} \in M$。回顾第2章和第6章对$\bar{x}$生成的地层中$\bar{x}$和$\Sigma(\bar{x})=\left{x \in M \mid J_0(x)=\right.$$J_0(\bar{x})$的活动指数的定义$J_0(\bar{x}):=\left{j \mid a_j^T \cdot \bar{x}=b_j\right}$。

定义17.2.1对于上文$A, b, M, \bar{x}$,如果其维度等于$\operatorname{rank}(A)$,则$\Sigma(\bar{x})$是最小地层。

很容易看出,如果$\Sigma(\bar{a})$是最小的行$\left{a_j \mid j \in J_0(\bar{x})\right}$张成了$A$的行空间。这将在下面有用

定理17.2.2设$A \in \mathbb{Z}^{m \times n}$是完全单模的。则对于每一个$b \in \mathbb{Z}^m$和$M:={x \in \mathbb{R} \mid A \cdot x \leq b}$的每一个最小层$\Sigma(x)$,在$M$中存在一个整点,即$M \cap \mathbb{Z}^m \neq \emptyset$。

证明。假设$\bar{x} \in M$为最小层,$\Sigma(\bar{x})$为最小层。W.1.o.g。假设前$r$许多行$a_1, \ldots, a_r$是线性独立的,${1, \ldots, r} \subseteq J_0(\bar{x})$,其中$r:=\operatorname{rank}(A)$(否则重新排序$A^{\prime} s$行)。由此可知$A^{\prime}=\left[a_{i j}\right]_{1 \leq i, j \leq r}$给出的$A$的$r \times r$子矩阵$A^{\prime}$是正则的。因此,线性系统
$$
A^{\prime} \cdot y=\left(\begin{array}{c}
b_1 \
\vdots \
b_r
\end{array}\right)
$$
有一个唯一的解$y^{\prime} \in \mathbb{R}^r$,它实际上属于$\mathbb{Z}^r$。这是由$b_i$的完整性,$A$的全单模性(它给出了$\operatorname{det}\left(A^{\prime}\right) \in$${-1,1})$和Cramer规则)推导出来的。

数学代写|优化理论代写Optimization Theory代考

数学代写|优化理论代写Optimization Theory代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment