Scroll Top
19th Ave New York, NY 95822, USA

数学代写|密码学代写Cryptography Theory代考|ElGamal in practice

如果你也在 怎样密码学与系统安全Cryptography and System Security 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。密码学Cryptography是对存在对抗行为的安全通信技术的实践和研究。 更广泛地说,密码学是关于构建和分析防止第三方或公众阅读私人信息的协议;信息安全的各个方面,如数据保密性、数据完整性、认证和不可抵赖性是现代密码学的核心。现代密码学存在于数学、计算机科学、电子工程、通信科学和物理学等学科的交叉点。密码学的应用包括电子商务、基于芯片的支付卡、数字货币、计算机密码和军事通信。

密码学与系统安全Cryptography and System Security在现代很大程度上是基于数学理论和计算机科学实践的;密码学算法是围绕计算硬度假设设计的,这使得这种算法在实际操作中很难被任何对手破解。虽然在理论上有可能破解一个设计良好的系统,但在实际操作中这样做是不可行的。因此,这种方案,如果设计得好,被称为 “计算安全”;理论上的进步(例如,整数分解算法的改进)和更快的计算技术要求这些设计被不断地重新评估,如果有必要的话,要进行调整。信息理论上的安全方案,即使有无限的计算能力也无法被破解,如一次性密码键盘,在实践中比理论上可被破解但计算上安全的最佳方案更难使用。

密码学与系统安全Cryptography and System Security代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的密码学与系统安全Cryptography and System Security作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此密码学与系统安全Cryptography and System Security作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

同学们在留学期间,都对各式各样的作业考试很是头疼,如果你无从下手,不如考虑my-assignmentexpert™!

my-assignmentexpert™提供最专业的一站式服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,Proposal代写,Proposal代写,Literature Review代写,Online Course,Exam代考等等。my-assignmentexpert™专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时有多家检测平台帐号,包括Turnitin高级账户,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在密码学与系统安全Cryptography and System Security代写方面经验极为丰富,各种密码学与系统安全Cryptography and System Security相关的作业也就用不着 说。

数学代写|密码学代写Cryptography Theory代考|ElGamal in practice

数学代写|密码学代写Cryptography Theory代考|ElGamal in practice

There are several important aspects of ElGamal which merit further discussion.
USE OF SYSTEM-WIDE PARAMETERS
One interesting aspect of ElGamal is that the values $p$ and $g$ can be treated as system-wide parameters, which are publicly known values shared by all the users of the system. In this case, we can regard the public key of a particular user as simply being the value $y$. The main cost of this is that the users have to agree to use the same system-wide parameters, but the benefit is that key generation becomes slightly more straightforward.
PROBABILISTIC ENCRYPTION
ElGamal provides probabilistic encryption by default which, as we discussed in Section 5.2.4, is a desirable feature. The minor disadvantage of requiring random number generation can be partially offset by conducting some of this work in advance and storing the results. The ElGamal encryption computation $C_1=g^k$ does not involve the plaintext $P$ and thus could be computed ahead of time and looked up from a table at the time of encryption.
MESSAGE EXPANSION
Most of the previous encryption algorithms we have studied encrypt a plaintext into a ciphertext of identical length. ElGamal shares the property of homophonic encoding (see Section 2.2.3): the ciphertext is longer than the plaintext. We previously referred to this property as message expansion. More precisely, an ElGamal ciphertext is twice as long as the corresponding plaintext, since each plaintext unit is a number modulo $p$, while its corresponding ciphertext consists of two numbers modulo $p$. This represents a potential cost in terms of bandwidth and storage.

For this reason, ElGamal is rarely implemented in practice in the form we have just described. However, as we will shortly discuss, elliptic-curve-based variants of ElGamal allow the size of the keys to become sufficiently small that, despite this message expansion, they are often preferred over RSA for efficiency reasons.

数学代写|密码学与系统安全代写Cryptography and System Security代考|Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is a phrase used to describe a suite of cryptographic primitives and protocols whose security is based on special versions of the discrete logarithm problem. Instead of using the numbers modulo $p$, ECC is based on different sets of numbers. These numbers are associated with mathematical objects called elliptic curves. There are rules for adding and computing multiples of these numbers, just as there are for numbers modulo $p$. We will not concern ourselves here with any of the details of elliptic curves or how to combine the points on such a curve.
ECC includes a number of variants of cryptographic primitives which were first designed for modular numbers. As well as variants of ElGamal encryption, these include an elliptic-curve-based variant of the Diffie-Hellman key agreement protocol (see Section 9.4.2), and an elliptic-curve-based variant of the Digital Signature Algorithm (see Section 7.3.6).

The advantage of switching from numbers modulo $p$ to points on an elliptic curve is that it is believed the discrete logarithm problem is much harder when applied to points on an elliptic curve. The important implication is that an equivalent security level can be obtained for shorter keys if we use elliptic-curve-based variants. We will show the approximate extent of this reduction in Section 5.4.

The many advantages of shorter keys, both in terms of key management and efficient computation (see Section 10.2), make elliptic-curve-based variants highly attractive for many application environments. ECC primitives are being increasingly adopted, especially in resource-constrained environments.

数学代写|密码学代写Cryptography Theory代考|ElGamal in practice

密码学与系统安全代写

数学代写|密码学代写Cryptography Theory代考|ElGamal in practice

ElGamal有几个重要方面值得进一步讨论。
使用系统范围的参数
ElGamal的一个有趣的方面是,值$p$和$g$可以被视为系统范围的参数,它们是由系统的所有用户共享的公开值。在这种情况下,我们可以将特定用户的公钥简单地视为值$y$。这样做的主要代价是用户必须同意使用相同的系统范围参数,但好处是密钥生成变得稍微简单一些。
概率加密
ElGamal默认提供概率加密,正如我们在5.2.4节中讨论的那样,这是一个理想的特性。需要随机数生成的小缺点可以通过提前执行一些此工作并存储结果来部分抵消。ElGamal加密计算$C_1=g^k$不涉及明文$P$,因此可以提前计算并在加密时从表中查找。
消息扩张
我们之前研究过的大多数加密算法都是将明文加密成长度相同的密文。ElGamal具有同音编码的特性(参见2.2.3节):密文比明文长。我们以前将此属性称为消息展开。更准确地说,ElGamal密文的长度是对应明文的两倍,因为每个明文单元都是一个以$p$为模的数字,而其对应的密文由两个以$p$为模的数字组成。这代表了带宽和存储方面的潜在成本。
由于这个原因,ElGamal在实践中很少以我们刚才描述的形式实现。然而,正如我们即将讨论的那样,基于椭圆曲线的ElGamal变体允许密钥的大小变得足够小,尽管消息扩展,但出于效率原因,它们通常比RSA更受欢迎。

数学代写|密码学与系统安全代写Cryptography and System Security代考|Elliptic Curve Cryptography

椭圆曲线密码学(ECC)是一个短语,用于描述一套加密原语和协议,其安全性基于离散对数问题的特殊版本。而不是使用数字模$p$, ECC是基于不同的数字集。这些数字与称为椭圆曲线的数学对象有关。这些数字的加法和计算倍数是有规则的,就像以p为模的数字一样。我们在这里不考虑椭圆曲线的任何细节,也不考虑如何将椭圆曲线上的点组合起来。
ECC包含许多最初为模数设计的密码原语变体。与ElGamal加密的变体一样,这些变体包括基于椭圆曲线的Diffie-Hellman密钥协议变体(参见第9.4.2节)和基于椭圆曲线的数字签名算法变体(参见第7.3.6节)。
从数字模$p$切换到椭圆曲线上的点的好处是,人们相信离散对数问题在应用于椭圆曲线上的点时要困难得多。重要的含义是,如果我们使用基于椭圆曲线的变体,则可以获得较短密钥的等效安全级别。我们将在第5.4节中显示这种减少的大致程度。
在密钥管理和高效计算方面(参见10.2节),短密钥的许多优点使得基于椭圆曲线的变体对许多应用程序环境都非常有吸引力。越来越多地采用ECC原语,特别是在资源受限的环境中。

数学代写|密码学与系统安全代写Cryptography and System Security代考

数学代写|密码学与系统安全代写Cryptography and System Security代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

Matlab代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Related Posts

Leave a comment