如果你也在 怎样代写运筹学Operations Research这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。假设检验Hypothesis是假设检验是统计学中的一种行为,分析者据此检验有关人口参数的假设。分析师采用的方法取决于所用数据的性质和分析的原因。假设检验是通过使用样本数据来评估假设的合理性。
运筹学(Operation)是近代应用数学的一个分支。它把具体的问题进行数学抽象,然后用像是统计学、数学模型和算法等方法加以解决,以此来寻找复杂问题中的最佳或近似最佳的解答。
二战中运筹学的应用
在二战时期,作战研究被定义为 “一种科学方法,为执行部门提供有关其控制的行动的决策的量化依据”。它的其他名称包括作战分析(英国国防部从1962年开始)和定量管理。
在第二次世界大战期间,英国有近1000名男女从事作战研究。大约有200名作战研究科学家为英国军队工作。
帕特里克-布莱克特在战争期间为几个不同的组织工作。战争初期,在为皇家飞机研究所(RAE)工作时,他建立了一个被称为 “马戏团 “的团队,帮助减少了击落一架敌机所需的防空炮弹数量,从不列颠战役开始时的平均超过20,000发减少到1941年的4,000发。
my-assignmentexpert™ 运筹学Operations Research作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的运筹学Operations Research作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此运筹学Operations Research作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
my-assignmentexpert™ 为您的留学生涯保驾护航 在运筹学Operations Research作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的应用数学applied math代写服务。我们的专家在运筹学Operations Research代写方面经验极为丰富,各种运筹学Operations Research相关的作业也就用不着 说。
我们提供的假设检验Hypothesis及其相关学科的代写,服务范围广, 其中包括但不限于:
- 商业分析 Business Analysis
- 计算机科学 Computer Science
- 数据挖掘/数据科学/大数据 Data Mining / Data Science / Big Data
- 决策分析 Decision Analytics
- 金融工程 Financial Engineering
- 数据预测 Data Forecasting
- 博弈论 Game Theory
- 地理/地理信息科学 Geography/Geographic Information Science
- 图论 Graph Theory
- 工业工程 Industrial Engineering
- 库存控制 Inventory control
- 数学建模 Mathematical Modeling
- 数学优化 Mathematical Optimization
- 概率和统计 Probability and statistics
- 排队论 Queueing theory
- 社交网络/交通预测模型 Social network/traffic prediction modeling
- 随机过程 Stochastic processes
- 供应链管理 Supply chain management
运筹学代写
数学代写|运筹学作业代写OPERATIONS RESEARCH代考|Change in Right-Hand Side (RHS) Values of Constraint Functions (bi)
RHS values in constraint functions represents resource availability of certain activity. In most cases, the management team provides tentative values for these activities as either they are not sure of the resources’ availability as activity has to happen in the near future or it is either underestimated or overestimated due to uncertainties involved. Sensitivity analysis is utilized to figure out change in optimal solution with change in amount of resource availability. For instance, number of production hours available in 8 hour shift after making allowances for food and rest time could be 420 minutes. But if overtime of 1 hour is applied, then the total production time available would be 480 minutes. This increased resource availability would allow an increase in production, but this would be justifiable only if it offsets the cost of overtime. This increased value of resource indicated by ‘b’ can be used to calculate the new value of objective function ‘ $Z$ ‘. The difference between value of ‘ $Z$ ‘ from original model and new value obtained from marginal increase (i.e. increase of one unit) of ‘ $\mathrm{b}$ ‘ is called as ‘shadow price. This can be done by considering the marginal increase in RHS values of other activities.
This phenomenon of change in optimal solution with change in RHS value of constraint function is explained by taking the example of maximization of sales of Adidas AG retail stores illustrated in Section 2.5. The case was regarding estimating the number of units to be sold to customers of geographic areas A and B. Sales estimation was dependent on constraints of accessibility, population density and median income. Profit achieved from area $A$ and B by selling per thousand units were $\$ 80$ and $\$ 40$, respectively, making the objective function to be $Z=80 x_{1}+40 x_{2}$. A constraint of population density discussed in the case implied that the maximum average
population that two stores can cater to was 10,000 . The final solution table has been reproduced here (Table 4.1) for easy comparison.
数学代写|运筹学作业代写OPERATIONS RESEARCH代考|alloWable RanGe of Rhs values (bi)
The following illustration explains the calculation of change in $\mathrm{b}{3}\left(\Delta \mathrm{b}{3}\right)$ as contribution to profit function with marginal increase in capacity of retailer to cater to demand (constraint 2). Non-basic variable associated with this constraint is $\mathrm{s}{2}$ so in following illustration coefficients of $s{2}$ have been used.
数学代写|运筹学作业代写OPERATIONS RESEARCH代考|ChanGe in objeCtive funCtion CoeffiCient (non-basiC vaRiable)
In this section, sensitivity analysis technique is applied to understand the impact on optimality of initial solution with change in coefficient of non-basic variable in the objective function. Every objective function consists of certain decision variables denoted by $\mathrm{x}{\mathrm{j}}$ (where $\mathrm{j}=1,2,3 \ldots$.). These are multiplied by some certain constants indicating per unit profit or cost termed as coefficients denoted by $\mathrm{c}{\mathrm{j}}$. We have seen in solutions of LPP by simplex method that either all or some of decision variables are basic variables. The remaining variables are considered in the non-basic variables category.
运筹学代考
数学代写|运筹学作业代写OPERATIONS RESEARCH代考|CHANGE IN RIGHT-HAND SIDERH小号约束函数的值b一世
约束函数中的 RHS 值表示某些活动的资源可用性。在大多数情况下,管理团队为这些活动提供暂定值,因为他们不确定资源的可用性,因为活动必须在不久的将来发生,或者由于涉及的不确定性而被低估或高估。敏感性分析用于找出最佳解决方案随资源可用性的变化而变化。例如,在考虑到饮食和休息时间后,8 小时轮班的可用生产小时数可能是 420 分钟。但如果加班 1 小时,则可用的总生产时间为 480 分钟。这种增加的资源可用性将允许增加产量,但这只有在抵消加班成本的情况下才是合理的。和’。’的值之间的差异和’ 来自原始模型和边际增加获得的新值一世.和.一世nCr和一种s和○F○n和你n一世吨的 ‘b’被称为’影子价格。这可以通过考虑其他活动的 RHS 值的边际增长来完成。
这种最优解随着约束函数 RHS 值的变化而变化的现象可以通过 2.5 节中说明的 Adidas AG 零售店销售额最大化的例子来解释。该案例是关于估计要出售给地理区域 A 和 B 的客户的单位数量。销售估计取决于可达性、人口密度和收入中位数的限制。面积取得的利润一种和 B 按每千件销售量计算$80和$40,分别使目标函数为和=80X1+40X2. 案例中讨论的人口密度约束意味着最大平均值
两家店能容纳的人口是10,000人。最终解表已在此处转载吨一种b一世和4.1以便于比较。
数学代写|运筹学作业代写OPERATIONS RESEARCH代考|ALLOWABLE RANGE OF RHS VALUESb一世
下图解释了 n b3 (∆b3)change in $\mathrm{b}{3}\left(\Delta \mathrm{b}{3}\right)$ as contribution to profit function with marginal increase in capacity of retailer to cater to demand (constraint 2). Non-basic variable associated with this constraint is $\mathrm{s}{2}$ so in following illustration coefficients of $s{2}$ 已被使用。
数学代写|运筹学作业代写OPERATIONS RESEARCH代考|CHANGE IN OBJECTIVE FUNCTION COEFFICIENTn○n−b一种s一世Cv一种R一世一种b一世和
在本节中,应用敏感性分析技术来理解目标函数中非基本变量系数的变化对初始解的最优性的影响。每个目标函数都由某些决策变量组成,
by xj
(where j = 1,2,3…).
These are multiplied by some certain constants
indicating per unit profit or cost termed as coefficients denoted by cj
. We have seen in
solutions of LPP by simplex method that either all or some of decision variables are
basic variables.
我们已经在单纯形法的 LPP 解决方案中看到,所有或部分决策变量都是基本变量。其余变量在非基本变量类别中考虑。